
A distributional Bayesian learning theory for visual perceptual learning

Training subjects to discriminate fine details of stimuli can improve perceptual capabilities, a phe-
nomenon known as perceptual learning (PL). Experiments have discovered intriguing psychophysical find-
ings despite the simple stimuli (e.g., Gabor patches) and training procedures (e.g., 2AFC task) involved.
Providing explanations for these learning effects could shed light on sensory plasticity in adulthood and
constraints in sensory processing. A notable feature of (visual) PL is its slow learning speed, which requires
days of training and hundreds or thousands of trials for the performance to saturate. This is sometimes
attributed to the low signal-to-noise ratio in the sensory activities, which poses a challenging classification
problem for decision neurons that readout these activities. How could the decision neurons learn when the
signal is so weak and brief, especially when supervision signal is delayed? We hypothesize that, rather than
relying on the short-lived activities at each trial, the brain may learn according to the distribution of sen-
sory activities summarized by sensory neurons over multiple stimulus presentations. We also assume that
the decision neurons combine sensory activities using uncertain readout weights modeled as probabilistic
(Bayesian) synapses (e.g. with a mean and sd). During PL, the weights are updated by averaging over the
stimulus distribution of the presented category; during perception, the decision neuron acts according to
the probability of the perceived category computed by a sample of the posterior weights. This model can
explain several behavioral findings obtained by Dosher and Lu (1998, 2005): the uniform downward shift of
threshold-versus-noise contrast (TVC) curves, the power-law decrease of the signal threshold with training,
and the asymmetric transfer between noisy and clean displays. This theory thus offers an alternative to the
Hebbian reweighting model (Dosher and Lu, 2010) and connects the theoretical literature of probabilistic
synapses to visual perceptual learning.

Stimulus and task We present the theory in the context of a simple 2AFC visual orientation discrimina-
tion task, i.e. whether the stimulus is clockwise or counter-clockwise w.r.t. a reference. We model the class
of the stimulus by a binary variable y ∈ {−1,+1}. The noisy responses x of orientation-selective neurons
can be modeled as a random variable with bell-shaped mean and Poisson-like variability as shown in Fig.
A. Specifically, we model the class-conditional activity distribution by pX|Y (x|y) = N (x̄y,Σ(x̄y)) ,where
x̄−1 and x̄+1 are the class-conditional population mean activities for y = −1 and y = +1, respectively, and
Σ() is a Poisson-like external noise covariance that depends on the mean (or can also be isotropic). The
task is to predict the hidden class associated to the stimulus that induced activity x.

Perception model The decision neuron in the brain predicts the class label according to the belief

q(ŷ|w,x) = Bernoulli(φ(w · x)) (1)

where ŷ ∈ {−1,+1} is the perceived class, w are the readout weights to be trained, and φ() is a nonlinearity
mapping to a probability. If there is no additional (internal) readout noise for a given x and w, then φ is
the Heaviside step function with a hard threshold. If there is an additional additive Gaussian internal noise
with standard deviation σi, then φ is the cumulative density function of N (0,σ2

i ) (probit). This model can
be regarded as a readout model (e.g., Dosher and Lu, 1998; Zhang et al., 2010; Sotiropoulos et al., 2011).

Distributional learning In most existing readout models, the weights w are deterministic and may be
learned using known plausible rules (e.g., Hebbian). We found that, without further modifications, the
perception model above with deterministic weights failed to capture key experimental results (also see Fig.
H). Instead, we model the weights as random variables, adopting the core hypothesis of the probabilistic
synapses framework (Aitchison et al., 2021). Treating naive subjects as having a zero-mean Gaussian prior
pW(w), one could try to model trial-by-trial, stimulus-driven PL as approximating

ps (w| {xi, yi}ni=1) ∝
n∏

i=1

pW(w)q(yi|xi,w), (2)
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where ps indicates that learning depends on each single stimulus, and n is the trial number. This rule
yields almost deterministic weights that could not reproduce experimental results. Further, computing
the complicated posterior above given very brief sensory input may be implausible. This approach is also
problematic when the label is presented after the stimulus as in most phychophysical experiments, since
it requires that the label and the exact stimulus be available simultaneously.

Instead, we consider the possibility that the sensory neurons memorize distributional statistics of their
activities over time (Harris et al., 2001), which can be retrieved by briefly presented stimuli. In other words,
learning may not be driven by the brief activities induced by a single stimulus but by the distributional
statistics. These statistics may last for a longer period (e.g., if encoded in recurrent connectivity) after
each stimulus and be ready for interaction with supervision signals. We thus postulate that the weights
are adjusted according to distribution-dependent rule
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pX|y(xi|yi), (3)

where pd indicates its distributional dependence. The key difference compared with (2) is the marginal-
ization over pX|y, which requires responses statistics of the presented class. When pX|y is Gaussian, this
marginalization is closed-form for the aforementioned choices of φ (1). We trained the perception model
(3) on the task conducted by Dosher and Lu (1998, 2005). Given a posterior pd, the decision strategy that
replicated three experimental findings required: a) sampl ing from pd and b) a soft probit φ in (1) with
probabilistic action; see Figure below.

A, Samples from the class-conditional pX|y in model simulation. B, Marginal pd
(
wm

∣∣ {yi}ni=1

)
in (3) for

m ∈ {1, . . . 50} sensory neurons after day 1 and day 15 with 45 trials per day. Heatmap shows posterior
density. The posterior mean approaches the optimal decision boundary but remain uncertain. In contrast,
the single-stimulus driven ps
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quickly collapse to almost deterministic weights (not shown). C,

TVC curves after human subjects are trained on the 2AFC task, reproduced from (Dosher and Lu, 1998).
There is a uniform decrease in signal threshold at all noise levels over the course of training. D, TVC curves
from model simulation when decisions are made by sampling from pd and acting probabilistically on q with
a probit (soft) φ. E, The log-signal threshold of human subjects decreases linearly with log-training days,
reproduced from (Dosher and Lu, 2005). F, Signal threshold versus training days from model simulation,
repeated for multiple noise levels. G, Accuracy for each training and testing (transfer) noise contrast
levels; transfer from low noise to high noise is more substantial than from high noise to low noise, similar
to reported by Dosher and Lu (2005). H, Other decision strategies that did not replicate key findings in
C: sampling from pd and using a Heaviside (hard) φ, or using the deterministic mean of pd.
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