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Summary Making optimal inferences about the state of the world from noisy sensory information re-
quires that accurate and flexible representations of the concomitant uncertainty be learnt. How might this
happen? It is obvious that supervised learning from noisy inputs must retain some information about un-
certainty to perform optimally (e.g. [3]), but it is unclear whether such a representation will be flexible or
generic enough to underpin general probabilistic computation. Here, we analyse the representation of un-
certainty that arises through supervised learning in a network tuned to propagate probabilistic messages
using the recently proposed distributed distributional coding (DDC) scheme. Following previous work
[4, 6], the DDC assumes that neurons represent uncertainty through the expectations of pre-specified basis
functions under the encoded distribution. DDCs can be used to generate state-of-the-art performance in
unsupervised learning of intractable models using a biologically plausible representation of uncertainty. We
trained recurrent neural networks (RNNs) to estimate the posterior mean of a non-linear dynamical system
without explicitly enforcing a DDC-like representation. Nonetheless, the RNN in which propagation was
consistent with DDC message passing performed better than other networks, and its hidden units preserved
more information about the posterior variance. Indeed, we found that activities in the hidden layer of this
RNN could be interpreted as posterior expectations of functions over the latent variables; these functions
did well not only in predicting the hidden activities, but also in reconstructing the posterior distributions.
Thus, we conclude that flexible DDC-like codes for uncertainty are learnt naturally within networks of the
suitable architecture.

Additional detail We generated data from a state-space model (Fig. 1A) with zero-mean linear-
Gaussian latent variables y1:T and generalised linear Poisson observations x1:T , and trained neural networks
to predict the posterior mean E(yt|x1:t). Although this supervised training objective is not explicitly prob-
abilistic, optimal computation requires that prediction of yt based on past observations x1:t−1 be combined
with information from the current observation xt in a manner that respects the uncertainties in each.
Thus, an optimal network will need to have learnt implicit representations of uncertainty. Our approach
differs from that used with probabilistic population codes [2] or the neural engineering framework [1] which
provides neural implementations of closed-form equations to explicitly carry out uncertainty estimation.

All networks have three levels of neurons shown in Fig. 1(B-E). The observations x are first transformed
into a feature representation φt = tanh(W · xt + b). Each φt is combined with the previous hidden
representation ht−1, which contains the message from all observations up to time t − 1, to form a new
representation ht (see below for different combination rules). The latent prediction ŷt is read out linearly
from ht. The loss function is the mean squared error (MSE) between the prediction and the true latent
values 1

T

∑T
t=1 ‖ŷt−yt‖2 which drives the RNN to learn to predict the posterior mean of the latent variables.
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Figure 1: (A) Generative model of the state-space model, arrows represent conditional distributions. (B-E)
Networks, arrows represent functions. (B) TensorRNN, ⊗ indicates tensor product between ht−1 and φ(x).
(C) MeanRNN, ��@@∇ indicates no backward gradients while forward connection is intact. (D) AddRNN, +
indicates addition between ht−1 and φ(x). (E) StaticNN, no temporal structure.



20 40 60 80 100
time steps

4

2

0

2
y

true post mean TensorRNN
T M A S

Model

10 3

10 2

10 1

100

ex
ce

ss
 e

rro
r

chain 1

T M A S

chain 2

T M A S

chain 3

Figure 2: Performance of the models. Left, examples of latent chains (true), posterior means by particle
filter and TensorRNN. Right, test MSE in excess of the particle filter for different models and latent chains.
Differences between models for each chain were all significant (p < 0.01).

The networks differ in how messages are propagated. DDC message passing is borrowed from kernel
belief propagation [5]: ht,i =

∑
j,k Vi,j,kht−1,jφt,k + ci

1, giving TensorRNN (Fig. 1B). The MeanRNN
(Fig. 1C) propagates message from ŷt−1 instead of ht−1. During training, the gradients from future ht:T

are stopped from reaching the previous prediction ŷt−1 to prevent additional information from forming
in ŷ. AddRNN (Fig. 1D) is the classical RNN where the feature representation φt is added to ht. The
last network, StaticNN (Fig. 1E), completely ignores the history and uses only the current observation to
predict the latent variable.

In our experiment, the observations x were most informative about chain 1 and least informative about
chain 3. The hidden representations h in all networks had 5 dimensions. After training, we tested the
networks on 1000 new random draws from the state-space model. A near-optimal posterior mean was
found by particle filtering with 3000 particles. Examples of the true latent chains and posterior mean
estimates from the particle filter and TensorRNN are shown in Fig. 2 left. The MSE of TensorRNN was
significantly lower than the other models (p < 0.01, Welch’s t-test, Fig. 2 right).

The results so far suggest that the hidden representations in TensorRNN may contain more uncer-
tainty information than the others for message passing. A naive way to verify this is to linearly decode
the posterior variance from the hidden units, for which TensorRNN outperformed the others (Table 1).
Following DDC, we assumed that the hidden units represent the posterior distribution by its expectations
of some functions over the latent variables ht,i = E[fi(yt)|x1:t] and estimated these functions fi(·) by kernel
function approximation. Examples of such functions are shown in Fig. 3. Test performance of these func-
tions in predicting the latent representations reached R2 > 0.95 in all models except StaticNN (R2 < 0.8).
Furthermore, we quantified the effectiveness of these functions by measuring how well the posterior mean
embeddings can be reconstructed using these functions. Indeed, the functions learned by TensorRNN had
the lowest reconstruction error compared to the other networks.

Network chain 1 chain 2 chain 3
TensorRNN 0.932 0.885 0.834
MeanRNN 0.852 0.753 0.586
PlusRNN 0.879 0.733 0.594
StaticNN 0.801 0.427 0.189

Table 1: R2 of posterior variance predic-
tion from hidden representation h.
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Figure 3: Functions found in TensorRNN (left) and MeanRNN
(right). Contours are slices along the 3rd dimension of y.
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1Equivalent to taking the outer product of ht and φt, then contracted with V along the last two dimensions, add bias.


