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Abstract 34 

Understanding visual perceptual learning (VPL) has become increasingly more challenging as new phenomena are 35 
discovered with novel stimuli and training paradigms. While existing models aid our knowledge of critical aspects of VPL, 36 
the connections shown by these models between behavioral learning and plasticity across different brain areas are typically 37 
superficial. Most models explain VPL as readout from simple perceptual representations to decision areas and are not easily 38 

adaptable to explain new findings. Here, we show that a well-known instance of deep neural network (DNN), while not 39 
designed specifically for VPL, provides a computational model of VPL with enough complexity to be studied at many levels 40 
of analyses. After learning a Gabor orientation discrimination task, the DNN model reproduced key behavioral results, 41 
including increasing specificity with higher task precision, and also suggested that learning precise discriminations could 42 
asymmetrically transfer to coarse discriminations when the stimulus conditions varied. In line with the behavioral findings, 43 
the distribution of plasticity moved towards lower layers when task precision increased, and this distribution was also 44 
modulated by tasks with different stimulus types.  Furthermore, learning in the network units demonstrated close 45 
resemblance to extant electrophysiological recordings in monkey visual areas. Altogether, the DNN fulfilled predictions of 46 
existing theories regarding specificity and plasticity, and reproduced findings of tuning changes in neurons of the primate 47 
visual areas. Although the comparisons were mostly qualitative, the DNN provides a new method of studying VPL and can 48 
serve as a testbed for theories and assist in generating predictions for physiological investigations. 49 

Significance statement 50 

Visual perceptual learning (VPL) has been found to cause changes at multiple stages of the visual hierarchy. We found that 51 
training a deep neural network (DNN) on an orientation discrimination task produced similar behavioral and physiological 52 
patterns found in human and monkey experiments. Unlike existing VPL models, the DNN was pre-trained on natural images 53 
to reach high performance in object recognition but was not designed specifically for VPL, and yet it fulfilled predictions 54 
of existing theories regarding specificity and plasticity, and reproduced findings of tuning changes in neurons of the primate 55 
visual areas. When used with care, this unbiased and deep-hierarchical model can provide new ways of studying VPL from 56 
behavior to physiology.  57 

Introduction  58 

Visual Perceptual Learning (VPL) refers to changes in sensitivity to visual stimuli through training or experience, and has 59 

been demonstrated in the discrimination of simple features such as orientation, contrast and dot motion direction as well as 60 
more complicated patterns (Fiorentini and Berardi, 1980; Ball and Sekuler, 1982; Karni and Sagi, 1991; Ahissar and 61 
Hochstein, 1997; Mastropasqua et al., 2015). A common characteristic of VPL is its lack of transfer to untrained stimulus 62 
conditions, such as when rotated by 90° (Fiorentini and Berardi, 1981; Schoups et al., 1995; Crist et al., 1997). Due to their 63 
retinotopic mapping and orientation tuning (Hubel and Wiesel, 1968; Blasdel, 1992; Tootell et al., 1998), early visual areas 64 
have been hypothesized to contribute to VPL and its specificity (Fahle, 2004). Despite numerous examples supporting this 65 

hypothesis (Schoups et al., 2001; Bejjanki et al., 2011; Sagi, 2011; Jehee et al., 2012; Yu et al., 2016), there is substantial 66 
evidence that specificity does not require low-level changes (Dosher and Lu, 1998; Ghose et al., 2002) and there is great 67 
controversy regarding where learning happens in the visual hierarchy (Wang et al., 2016; Maniglia and Seitz, 2018). 68 

Most models of VPL are artificial neural networks with user-parametrized receptive fields and shallow network structures. 69 
Trained using Hebbian-like learning rules (Sotiropoulos et al., 2011; Herzog et al., 2012; Dosher et al., 2013) or optimal 70 

decoding methods (Zhaoping et al., 2003), these models can reproduce and predict behavior but rarely account for 71 
physiological data. Moreover, a key limitation of these models is that they do not address how the multiple known visual 72 
areas may jointly contribute to learning (Hung and Seitz, 2014). Other more conceptual models, such as the Reverse 73 
Hierarchy Theory (RHT) (Ahissar and Hochstein, 1997; Ahissar and Hochstein, 2004) and the Dual Plasticity Model 74 
(Watanabe and Sasaki, 2015), make predictions regarding what types of learning scenarios may lead to differential plasticity 75 
across visual areas, but these descriptive models do not predict specific changes in tuning properties of neurons. Thus, there 76 
is a substantial need for a hierarchical model that can simulate learning and simultaneously produce behavioral and 77 

neurological outcomes. 78 

A novel approach to modeling VPL can be found in deep neural networks (DNNs) which is readily adapted to learn different 79 
tasks. These DNNs have shown impressive correspondences to human behaviors and neural data from early visual areas 80 
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and inferior temporal cortex (IT) (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Guclu and van Gerven, 81 
2015; Cichy et al., 2016; Kheradpisheh et al., 2016; Eickenberg et al., 2017). This hierarchical system opens up new 82 
opportunities for VPL research (Kriegeskorte, 2015). As a start, Lee & Saxe (2014) produced theoretical analyses that 83 
resembled RHT predictions in a 3-layer linear network. Recently, Cohen and Weinshall (2017) used a shallow network to 84 
replicate relative performances of different training conditions for a wide range of behavioral data. To date, the extent to 85 
which DNNs can appropriately model physiological data of VPL remains unexplored. 86 

In the present paper, we trained a DNN model modified from AlexNet (Krizhevsky et al., 2012) to perform Gabor orientation 87 
and face gender discriminations. The network reflected human behavioral characteristics, such as the dependence of 88 
specificity on stimulus precision (Ahissar and Hochstein, 1997; Jeter et al., 2009). Furthermore, the distribution of plasticity 89 
moved towards lower layers when task precision increased, and this distribution was also modulated by tasks with different 90 
types of stimulus. Most impressively, for orientation discrimination, the network units showed similar changes to neurons 91 

in primate visual cortex and helped reconcile divergent physiological findings in the literature (Schoups et al., 2001; Ghose 92 
et al., 2002). These results suggest that DNNs can serve as a computational model for studying the relationship between 93 
behavioral learning and plasticity across the visual hierarchy during VPL, and how patterns of learning vary as a function 94 
of training parameters (Maniglia and Seitz, 2018).  95 

Materials and Methods  96 

Model 97 

An AlexNet-based DNN was used to simulate VPL. We briefly describe the network architecture here and refer readers to 98 
the original paper (Krizhevsky et al., 2012) for details. The original AlexNet consists of eight layers of artificial neurons 99 
(units) connected through feedforward weights. In the first five layers, each unit is connected locally to a small patch of 100 
retinotopically arranged units in the previous layer or the input image. These connections are replicated spatially so that the 101 
same set of features is extracted at all locations through weight sharing. The operation that combines local connection with 102 
weight sharing is known as convolution. Activations in the last convolutional layer are sent to three fully connected layers 103 
with the last layer corresponding to object labels in the original object classification task. Unit activations are normalized 104 
in the first two convolutional layers to mimic lateral inhibition. 105 

To construct the DNN model, we took only the first five convolutional layers of AlexNet and discarded the three fully 106 
connected layers to reduce model complexity. An additional readout unit is added to fully connect with the units in the last 107 
layer, forming a scalar representation of the stimulus in layer 6. We removed the last three layers of AlexNet because they 108 
exhibited low representational similarity to early visual areas but high similarity to Inferior Temporal Cortex (IT) and hence 109 
may be more relevant to object classification (Khaligh-Razavi and Kriegeskorte, 2014; Guclu and van Gerven, 2015), and 110 
we assume that early visual areas play a more critical role for Gabor orientation discrimination. We kept all the five 111 
convolutional layers because one of our objectives was to study how learning was distributed over a visual hierarchy with 112 

more levels than most VPL models which are usually limited to 2-3 levels. In addition, activations in these five layers have 113 
been suggested to correspond to neural activities in V1-4 following a similar ascending order (Guclu and van Gerven, 2015). 114 

The resulting 6-layer network was further modified to model decision making in the two-interval two-alternative forced 115 
choice (2I-2AFC) paradigm (Figure 1A). In this paradigm, a reference stimulus is first shown before a second target 116 
stimulus, and the network has to judge whether the second stimulus is more clockwise or more counter-clockwise compared 117 

with the reference. In our DNN model, each of the reference and target images is processed by the same 6-layer network 118 
that yields a scalar readout in layer 6, and the decision is made based on the difference between the representations with 119 
some noise. More precisely, two identical streams of the 6-layer network produce scalar representations for the reference 120 

and target images, denoted by ℎ𝑟  and ℎ𝑡 , respectively. The network outputs a clockwise decision with probability (or 121 
confidence) 𝑝 by passing the difference Δℎ = ℎ𝑡 − ℎ𝑟 through a logistic function 122 

 
𝑝 =

exp(Δℎ)

exp(Δℎ) + 1
 ( 1 ) 

This construction assumes perfect memory about the two representations which are computed using the same model 123 
architecture and parameters, and each choice is made with some decision noise. An advantage of using this 2I-2AFC 124 
architecture is that, when tested under transfer conditions (such as a new reference orientation), the network can still compare 125 
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the target with the reference by taking the difference between the representations; whereas if only one stream exists, the 126 
model cannot know the new reference orientation. We note that while this training paradigm is suitable for this network and 127 
was thus kept consistent throughout the simulations, it is different from those used in the physiological studies (Schoups et 128 
al., 2001; Ghose et al., 2002; Yang and Maunsell, 2004; Raiguel et al., 2006) with which we compare our network in the 129 
Results section. Learning could also be influenced by details of those experiments beyond what is accounted for by the 130 
present simulations.  131 

Task and stimuli 132 

All stimuli in the two experiments below were centered on 8-bit 227×227-pixel images with gray background.  133 

Experiment 1  134 
The network was trained to classify whether the target Gabor stimulus was tilted clockwise or counter-clockwise compared 135 

to the reference. We trained the network on all combinations of the following parameters:  136 

• Orientation of reference Gabor: from 0° to 165° at steps of 15°; 137 

• Angle separation between reference and target (0.5°, 1.0°, 2.0°, 5.0°, 10.0°); 138 

• Spatial wavelength (10, 20, 30, 40 pixels). 139 

To simulate the short period of stimulus presentation and sensory noise, we kept the contrast low and added to each image 140 
isotropic Gaussian noise with the following parameters:  141 

• Signal contrast (20%, 30%, 40% to 50% of the dynamic range); 142 

• Standard deviation of the Gaussian additive noise (5 to 15 in steps of 5). 143 

In addition, the standard deviation of the Gabor Gaussian window was 50 pixels. Noise was generated at run time 144 
independently for each image. An example of a Gabor stimulus pair is shown in Figure 1A.  145 

Experiment 2  146 
The network was trained on face gender discrimination and Gabor orientation discrimination. For the face task, the network 147 
was trained to classify whether the target face was more masculine or feminine (closer to the original male or female in 148 
warping distance) than the reference face. Stimuli were face images with gender labels from the Photoface Dataset (Zafeiriou 149 

et al., 2011). 647 male images and 74 female images with minimal facial hair were manually selected from the dataset, 150 
captured in the frontal pose with the blank stare emotion. The bias in subject gender was addressed by subsampling to form 151 
balanced training and testing sets. The facemorpher toolbox (https://pypi.python.org/pypi/facemorpher/1.0.1) was used to 152 
create a reference that is halfway between a male and a female image.  153 

To manipulate task difficulty, target images were created that varied in dissimilarity to the reference image ranging from 1 154 

(closest to the reference) to 5 (the original male or female image) by adjusting a warping (mixing) parameter. The reference 155 

and target were morphed from the same pair of the original faces. The network was trained and tested using 12-fold cross-156 
validation to simulate inter-observer variability. Each fold consists of images morphed from 49 males and 49 females for 157 
training (2401 pairs) and 25 males and 25 females for testing (625 pairs) randomly sampled from the full dataset. Examples 158 
of face stimuli at the five dissimilarity levels are shown in Figure 1B.  159 

The Gabor stimulus had a wavelength of 20 pixels and the standard deviation of the Gaussian window was 50. The reference 160 

angle ranged from 0° to 165° at steps of 15° and the target image deviated from the reference by 0.5, 1.0, 2.0, 5.0 or 10.0°. 161 
For both the face and Gabor tasks in this experiment, contrast was set to 50% and noise standard deviation was set to 5. 162 

Training procedure 163 

In both experiments, network weights were initialized such that the readout weights in layer 6 were zeros and weights in 164 
the other lower layers were copied from a pre-trained AlexNet (downloaded from 165 

http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel). The learning algorithm was stochastic gradient descent (SGD) 166 
whereby the weights were changed to minimize the discrepancy between network output and stimulus label 167 

 𝜽𝑡+1 = 𝜽𝑡 + 𝒗𝑡+1 ( 2 ) 
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 𝒗𝑡+1 = 𝜇𝒗𝑡 − 𝛼∇𝜽𝑡𝐿(𝜽𝑡 , 𝑰, 𝑳) ( 3 ) 

where 𝛼 (0.0001) and 𝜇 (0.9) are learning rate and momentum, respectively, which are held constant through training, 𝜽𝑡 is 168 
the network weights at iteration 𝑡, and 𝒗𝑡 is the corresponding weight change. 𝐿(𝜽, 𝑰, 𝑳) is the cross-entropy loss which 169 

depends on the network weights, input image batch 𝑰 of size 20 pairs and the corresponding labels 𝑳. Gradients were 170 
obtained by backpropagation of the loss through layers (Rumelhart et al., 1986).  171 

Under this learning rule, zero initialization in the readout weights prevents the other layers from changing in the first 172 
iteration, since the weights in those layers cannot affect performance when the readout weights are zeros and hence have 173 
zero gradients. This initialization can be interpreted as receiving instruction by subjects because all stimulus representations 174 
in the lower layers are fixed while the network briefly learns the task on the highest decision layer. After the first iteration, 175 
the readout weights will not be optimal due to small learning rate, and so weights in the lower layers will start to change. 176 
Under each stimulus condition, the network was trained for 1000 iterations of 20-image batches so that one iteration is 177 
analogous to a small training block for human subjects. Independent noise was generated to each image at each iteration. 178 
We outline the limitations of the model in the Discussion section.  179 

Behavioral performance  180 

The network’s behavioral performance was estimated as the classification confidence (Equation 1) of the correct label 181 
averaged over test trials. For the Gabor task, we tested the network’s performance on stimuli generated from the same 182 

parameters as in training (trained condition), and also tested on stimuli generated from different parameters (transfer 183 
conditions) including rotating the reference by 45 and 90°, halving or doubling the spatial frequencies and changing angle 184 
separations between the reference and target (precisions). 200 pairs of Gabor stimuli were used in each test condition. For 185 
the face task, performance was tested on 625 unseen validation images. Performance was measured at 20 roughly 186 
logarithmically spaced iterations from 1 to 1000.  187 

In Experiment 2, the contribution of DNN layers to performance was estimated using an accuracy drop measure defined as 188 
follows. Under each stimulus condition, we recorded the iteration at which the fully plastic network reached 95% accuracy, 189 
denoted by t95; we then trained a new network again from pretrained AlexNet weights under the same stimulus condition 190 
while freezing successively more layers from layer 1, and used the accuracy drop at t95 compared to the all plastic network 191 
as the contribution of the frozen layers. For example, suppose that the fully plastic network reached 95% accuracy at 100 th 192 

iteration (t95=100), and at this iteration, the network trained with layer 1 frozen had 90% accuracy, the network trained with 193 
first two layers frozen had 85% accuracy, then the first layer contributed 5% and the first two layers together contributed 194 
10%. This accuracy drop does not indicate the contribution of each layer in isolation, but allows for different interactions 195 
within the plastic higher layers when varying the number of frozen lower layers.  196 

Estimating learning in layers and neurons 197 

After training, weights at each layer were treated as a single vector, and learning was measured based on the difference from 198 

pre-trained values. Specifically, for a particular layer with 𝑁 total connections to its lower layer, we denote the original 𝑁-199 
dimensional weight vector as 𝒘 (𝑁 and 𝒘 specified in the pre-trained AlexNet), the change in this vector from training as 200 

𝛿𝒘, and define the layer change as 201 

 
𝑑𝑟𝑒𝑙1 =

∑ |𝛿𝑤𝑖|
𝑁
𝑖

∑ |𝑤𝑖|
𝑁
𝑖

 ( 4 ) 

where 𝑖 indexes each element in the weight vector. Under this measure, scaling the weight vector by a constant gives the 202 
same change regardless of dimensionality, reducing the effect of unequal dimensionalities on the magnitude of weight 203 
change. For the final readout layer that was initialized as zeros, the denominator in Equation 4 was set to 𝑁, effectively 204 
measuring the average change per connection in this layer. When comparing weight change across layers, we focus on the 205 
first five layers unless otherwise stated. In addition, the following alternative layer change measures were also used  206 

 

𝑑𝑟𝑒𝑙2 =
√∑ |𝛿𝑤𝑖

2|𝑁
𝑖

√∑ |𝑤𝑖
2|𝑁

𝑖

 
( 4a ) 
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𝑑𝑚1 =

∑ |𝛿𝑤𝑖|
𝑁
𝑖

𝑁
 

( 4b ) 

 

𝑑𝑚2 = √
∑ |𝛿𝑤𝑖

2|𝑁
𝑖

𝑁
 ( 4c ) 

which produced different values, but they did not change the general effects of stimulus conditions on distribution of 207 

learning in weights. For the results in the main text, we report weight change in terms of 𝑑𝑟𝑒𝑙1 unless otherwise stated. Due 208 
to weight sharing, the layer change defined above is equal to the change in the subset of weights that share the same receptive 209 
field. To measure learning of a single unit, we used the same equation but with 𝒘 being the filter of each unit and 𝑁 being 210 
the size of the filter.  211 

Tuning curves 212 

For each unit in the network, we “recorded” its tuning curve before and after training by measuring its responses to Gabor 213 
stimuli presented at 100 orientations evenly spaced over the 180° cycle. The stimuli had noise standard deviation 15, contrast 214 
20% and wavelength 10 pixels, and one period of the sinusoidal component of the Gabor stimulus was contained within the 215 
receptive field of a layer-1 unit. The mean and standard deviation at each test orientation were obtained by presenting the 216 
network with 50 realizations of noisy stimuli, followed by smoothing with a circular Gaussian kernel. The gradients of 217 
tuning curves were computed by filtering the mean response with a circular Laplace filter. Both the Gaussian and Laplace 218 

filters had a standard deviation of 1°. Since the receptive fields were shared across locations, we only chose the units with 219 
receptive fields at the center of the image; thus, the number of units measured at each layer equals the number of filter types 220 
(channels) in that layer. Also, to ensure that units were properly driven by the stimulus, we excluded units that had mean 221 
activation over all orientations less than 1.0. The same procedure was repeated under 5 precisions and 12 reference 222 
orientations before and after training. No curve fitting was employed. On average, each training condition produced the 223 
following number of units after training for analyses: 79.4 out of 96 in layer 1, 91.0 out of 256 in layer 2, 237.3 out of 384 224 
in layer 3, 100.3 out of 384 in layer 4, and 16.0 out of 256 in layer 5. These numbers were roughly the same for the naïve 225 
populations. Units were pooled together for the 12 reference orientations.  226 

To compare with electrophysiological data in the literature, we measured the following attributes from tuning curves 227 
nonparametrically. The preferred orientation was determined by the orientation at which a unit attained its peak response. 228 
Tuning amplitude was taken to be the difference between the highest and lowest responses. Following (Raiguel et al., 2006), 229 
the selectivity index, a measure of tuning sharpness, was measured as 230 

 
𝑆𝐼 =

√[∑ 𝑠𝑖 sin(2𝛼𝑖)𝑖 ]2 + [∑ 𝑠𝑖 cos(2𝛼𝑖)𝑖 ]2

∑ 𝑠𝑖𝑖
 ( 5 ) 

where 𝑠𝑖 is the mean activation of a unit to a Gabor stimulus presented at orientation 𝛼𝑖  for the 𝑖’th measured orientation 231 
(from 1 to 100). The normalized variance (or Fano factor, variance ratio) of the response at a particular orientation was 232 

taken as the ratio of response variance to the mean. Following (Yang and Maunsell, 2004), we measured the best 233 
discriminability of a unit by taking the minimum, over orientation, of response variance divided by tuning curve gradient 234 
squared. 235 

To measure how much information about orientation was contained in a layer per neuron, we computed the average linear 236 
Fisher information (FI) (Seriès et al., 2004; Kanitscheider et al., 2015) at a particular orientation as 237 

 

 
𝐹𝐼(𝛼) =

1

𝑛
𝒇′(𝛼) ⋅ 𝚺(𝛼)−𝟏 ⋅ 𝒇′(𝛼) ( 6 ) 

where 𝒇′(𝛼) is a vector of tuning curve gradients at orientation 𝛼 for 𝑛 units in that layer (those with receptive fields at the 238 
center of the image), and 𝚺(𝛼) is the corresponding response covariance matrix. In addition, independently for each unit, 239 
we measured its FI as its tuning curve gradient squared divided by response variance at the measured orientation. For FI 240 

calculation, units with activity less than 1.0 at the measured orientation were excluded to avoid very low response variance. 241 

Experimental design and statistical analyses 242 

In Experiment 1, the network was trained on Gabor orientation discrimination under 2880 conditions (12 reference 243 
orientation, 4 contrasts, 4 wavelengths, 3 noise levels and 5 angular separations). In Experiment 2, the network was trained 244 
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on 360 conditions in each of the Gabor and face tasks (12 reference orientations or training-testing data splits, 5 dissimilarity 245 
levels and 0 to 5 frozen layers).  246 

We carried out our analyses on three levels. On the behavioral level, the effects of training and test angle separation on 247 
performance was tested using linear regression. On the layer level, the effects of layer number and training angle separation 248 
on layer change were tested also using linear regression. To see whether the distribution of learning differed between tasks, 249 

we used two-way ANOVA to test whether there was an effect of task on layer change. At the unit level, we tested for 250 
significant changes in various tuning curve attributes recorded in the literature, using K-S for distributional changes, two-251 
sample Mann-Whitney U for changes in tuning curve attributes from training, and two-way ANOVA when neurons were 252 
grouped according to naïve/trained and their preferred orientations. Finally, to test whether there was a relationship between 253 
the network’s initial sensitivity to the trained orientation, we used a regression model described with the results. The 254 
significance level for all tests was 0.01. Bonferroni corrections were applied for multiple comparisons.  255 

All code was written in Python with Caffe (http://caffe.berkeleyvision.org) for DNN stimulations and statsmodel (Seabold 256 
and Perktold, 2010) for statistical analyses. Code and stimulated data are available on request. 257 

Results 258 

Behavior 259 

The network was trained to discriminate whether the target Gabor patch was more clockwise or more counter-clockwise to 260 
the reference, repeated in 2880 conditions (12 reference orientation, 4 contrasts, 4 wavelengths, 3 noise levels and 5 261 
precisions or angle separations). The performance trajectories grouped by precision are shown in Figure 2A (top row) for 262 
the trained and transfer conditions of rotated reference orientations (clockwise by 45 or 90°) and scaled spatial frequencies 263 
(halved or doubled). The accuracy measured at the first iteration (analogous to naïve real subjects) indicates the initial 264 

performance when only the readout layer changed. Both initial performance and learning rate under the trained condition 265 
were superior for the less precise tasks, consistent with findings from the human literature (Ahissar and Hochstein, 1997; 266 
Jeter et al., 2009). Percentage correct increased in a similar way to human data on Vernier discrimination (Herzog and 267 
Fahlet, 1997) and motion direction discrimination (Liu and Weinshall, 2000). Convergence of performance for the transfer 268 
stimuli required more training (note the logarithmic x-axis in Figure 2A) than for the trained stimuli, which may imply that 269 
much more training examples are necessary to achieve mastery on the transfer stimuli, consistent with some studies of tactile 270 
perceptual learning (Dempsey-Jones et al., 2016).  271 

Moreover, we characterized the dynamics of transfer by calculating the transfer index as the ratio of transfer accuracy to the 272 
corresponding trained accuracy. As shown in Figure 2A (bottom row), this ratio decreased initially but started to rise slowly 273 
for all conditions, and the trajectory for orthogonal transfer (ori+90) under the highest precision were almost flat towards 274 
the end of training. Similar reduction in transfer index with increasing training sessions has been demonstrated in human 275 
experiments (Jeter et al., 2010). 276 

Figure 2B shows the final transfer performance grouped by transfer conditions and training precision. All transfer accuracies 277 
were below 1.0, especially for the orientation transfers, indicating learning specificity. A linear regression on transfer 278 
accuracy showed a significant positive main effect of log angle separation in all four transfer conditions (p<0.0001; see 279 
Extended Data Table 2-1 for details), implying better transfer performance for less precise training. This result is consistent 280 
with experimental data and theoretical prediction that greater specificity happens in finer precision tasks (Ahissar and 281 

Hochstein, 1997; Liu, 1999; Liu and Weinshall, 2000).  282 

However, the test precisions were the same as used during the respective training conditions and thus varied in intrinsic 283 
discriminability, which could have determined the observed transfer pattern. We then tested each trained network on all 284 
angle separations to see whether we would reproduce human data (Jeter et al., 2009) where a difference in test precision 285 
affects transfer more than training precision. Indeed, Figure 2C shows a strong positive main effect of test separation 286 

(p<0.001 and R2>0.35 for all transfer conditions); however, we also found that training separation had a significant effect 287 
(p<0.001) in all transfer conditions, and the effect size was the smallest in orthogonal orientation transfer (see Extended 288 
Data Table 2-1 for details). The more substantial transfer to 45° from trained orientations compared to 90° could be due to 289 
a larger overlap between the transfer orientation and the trained orientation representation of the network units. Thus, despite 290 
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the observation of diminishing transfer with increasing precision when the training and test precisions are equal (diagonal 291 
lines in Figure 2C), the analyses across all precision combinations predict that transfer is more pronounced from precise to 292 
coarse discrimination than vice-versa, although transfer can be very small at the orthogonal orientation. 293 

Overall, these behavioral findings are consistent with extant behavioral and modeling results of perceptual learning. 294 
Furthermore, the DNN model can simulate a wide number of training conditions and makes predictions regarding the 295 

relative performances and learning rates of the trained stimuli compared to that of transfer stimuli. However, it is expected 296 
that some details of this DNN’s behavioral results will necessarily differ from that of experimental data.  297 

Distribution of learning across layers 298 

Learning in the weight space 299 
We next examined the timecourse of learning across the layers as a function of precision, calculated using Equation 4 and 300 

shown in Figure 3A. Overall, all layers changed faster at the beginning of training in coarse than in precise angle separations, 301 
training precise angle separations produced greater overall changes. Of note, while the highest readout layer (layer 6) 302 
changed faster than the other layers (Saxe, 2015), this is likely a consequence of zero-initialization in the readout weights. 303 
This suggests that when performance was at chance level, due to naivety to the task, information about the stimulus label 304 
cannot be passed on to lower layers while the performance is close to chance. Hence, we focus our discussion on layers 1 305 
to 5, whose weights were copied from a pre-trained AlexNet. 306 

To characterize learning across layers, we studied when and how much each layer changed during training. To quantify 307 
when significant learning happened in each layer, we estimated the iteration at which the gradient of a trajectory reached its 308 
peak (peak speed iteration, PSI) which are shown in Figure 3B. In layers 1 to 5, we observed significant negative main 309 
effects of log angle separation (β=-46.02, t(14396)=-52.93, p≈0.0, R2=0.40) and layer number (β=-2.07, t(14396)=-13.65, 310 
p=3.6×10-42, R2=0.0031) and positive interaction of the two (β=2.93, t(14396)=11.16, p=8.0×10-29, R2=0.0050) on PSI, 311 

suggesting that layer change started to asymptote later for lower layers and smaller angle separations. For individual 312 
precision conditions, a linear regression analysis showed a significant negative effect of layer number on PSI only in the 313 
two most precise tasks (p<0.0001, see Extended Data Table 3-1 for details). Hence, under high precisions, the order of 314 
change across layers is consistent with the Reverse Hierarchy Theory prediction that higher visual areas change before 315 
earlier ones (Ahissar and Hochstein, 1997). 316 

The final layer change at the end of training is shown in Figure 3C. For a better visual comparison, we calculated the relative 317 
layer change under each stimulus condition by taking the ratio of layer change against the change resulted from training at 318 
the coarsest angle separation, keeping other stimulus conditions fixed (Figure 3D). The results suggest that changes in lower 319 
layers increased by a larger factor than higher ones except layer 5. A linear regression analysis on the changes in layers 1-5 320 
revealed significant negative main effects of log angle separation (β=-0.0060, t=-87.25, p≈0.0, R2=0.34) and layer number 321 
(8.6×10-4, p≈0.0, R2=0.092) and positive interaction of the two (0.00010, t=49.23, p≈0.0, R2=0.082). The interaction of 322 
angle separation × layer number on layer change is consistent with the prediction that higher-precision training induces 323 
more change lower in the hierarchy (Ahissar and Hochstein, 1997).  324 

Change of information about orientation 325 
While we have considered thus far the changes in the weights of the DNN, there is still a question of how the information 326 

about orientation changed across layers, and how this may vary as a function of training precision. We address this by 327 
showing in Figure 4 the covariance-weighted linear Fisher information (FI, Equation 6) of the trained and naïve unit 328 
population at each layer and each test orientation when trained at each angle separation. The tuning curves used to evaluate 329 
FI were obtained from the units with receptive fields at the center of the image (see Materials and Methods). A prominent 330 
observation is that FI increased most dramatically at the highest layers under the most precise task and diminished towards 331 
lower layers and coarser precisions. Lower layers saw significant FI increase only in the most precise tasks, whereas higher 332 
layers increased FI in all precisions.  333 

However, the quantitative trend of FI increase was contrary to the layer change where more substantial learning happened 334 
in the lower layers. Notably, despite the large change in layer 1 weights (Figure 3C), there was no visible change in FI. The 335 
large FI increase in higher layers may not be surprising due to a single hierarchy with readout on the top layer and the 336 
accumulation of weight changes from the lower layers.  337 
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In addition, we observed patterns of FI over orientations. After training at the finest precision, the top layers exhibited 338 
significant and substantial increase of FI around the trained orientation; FI fell off around 20° away from trained orientation 339 
but remained noticeable until the orthogonal orientation. This could account for the transfer behavior predicted by the 340 
network (Figure 2) where learning transferred more substantially if the Gabor stimulus was rotated by 45°, rather than 90° 341 
which was a common transfer condition tested in experiments.  342 

These data show that the increase of information about orientation over network layers changes as a function of training 343 
precision. Later, we will discuss how this information in the pre-trained network may affect learning (Figure 10).  344 

Effect of feature complexity on distribution of learning 345 
Are the observed layer changes prescribed solely by the network structure and learning rule regardless of the task? To find 346 
out whether these patterns were task specific, we simulated learning of a “higher-level” face gender discrimination task and 347 

investigated its effect on the distribution of learning in network weights compared with Gabor orientation discrimination. 348 
In the face task, difficulty was manipulated by morphing between male and female face images, and the network was trained 349 
to discriminate whether the target was more masculine or feminine compared to the reference. Both tasks were repeated 350 
under 360 conditions (12 reference orientations for the Gabor task or 12 training-testing data splits for the face task, 5 351 
dissimilarity levels and 0 to 5 frozen layers). By the end of training, the fully plastic network reached test accuracy above 352 
95% for all stimulus conditions. In this section, we assume that learning in stimulus representation happened in the lower 5 353 

layers and ignore the changes in layer 6. 354 

Due to the hierarchical representation from earlier to later visual areas, one may hypothesize that learning in lower layers 355 
of the DNN would play a more important role in performance for the Gabor task relative to the face task. To quantify the 356 
contributions of layers, we measured how much accuracy dropped when more lower layers were frozen (keeping weights 357 
fixed) at a particular iteration during training (see Methods and Materials). Results are shown in Figure 5A. Performance in 358 

the Gabor task dropped considerably when freezing layer 2 onwards; whereas in the face task, learning was significantly 359 
impaired only when freezing all the four layers or more. While this freezing technique is unnatural, and it is possible that 360 
compensatory changes occurred that did not reflect properties of learning in the fully plastic network, these results support 361 
the hypothesis that the higher layers are more informative for more complex stimulus judgements and the earlier layers are 362 
so for more precise and simpler ones. 363 

To further test whether the distribution of learning depended on task, we calculated the proportions of layer change in the 364 
first five layers by normalizing these changes against their sum (Figure 5B). Since the first layer did not have a large 365 
contribution to performance (Figure 5A), and response normalization happened after the first layer, we also compared the 366 
layer change proportions after training while freezing the weights in layer 1 at pre-trained values. A two-way ANOVA 367 
revealed a significant interaction of layer × task on layer change proportion in both network conditions (p<0.0001, see 368 
Extended Data Table 5-1 for details), suggesting that task indeed changed the distribution of learning over layers. Post-hoc 369 
analysis showed a significant increase in weight change proportions in layers 4 and 5 and a significant decrease in layer 2 370 
(Mann-Whitney U, threshold p=0.01, Bonferroni-corrected for 5 or 4 layers). Therefore, more weight change happened in 371 
lower layers when learning the “low-level” Gabor task and higher layers acquired more change in the “high-level” face task, 372 
consistent with theories of VPL (Ahissar and Hochstein, 1997; Ahissar and Hochstein, 2004; Watanabe and Sasaki, 2015). 373 

One should be careful when interpreting values of layer change defined by Equation 5. For instance, the layer with maximum 374 
change varied between layers 1-3 depending on how these changes were calculated, although the general effects of precision 375 

and task on layer change were consistent under other weight change measures (Extended Data Figure 5-1). In addition, it 376 
may be tempting to infer the relationship between layer contribution and change; however, freezing early layers created 377 
different interactions between the higher plastic layers, which makes it difficult to compare layer contribution with the layer 378 
change obtained by the fully plastic network.  379 

Thus, by analyzing the weight changes in the network layers, we have shown that the distribution of learning over the 380 

network hierarchy moves towards lower layers for more precise discriminations of simple features, and to higher layers for 381 
less precise or more complex stimuli, such as faces. To see to what extent this DNN model can reflect changes in the brain 382 
during perceptual learning, we compare activations of individual units in the network with activities of real neurons in the 383 
brain recorded by electrophysiology in the following section. 384 
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Tuning changes of single units  385 

Single units in different layers of the DNN model were examined to see whether the changes in these units were similar to 386 
those in monkey neurons after VPL. A key target of this investigation was to address computationally some of the significant 387 
findings in the literature that had led to diverging interpretations of plasticity within the visual hierarchy. Previous research 388 
on DNNs found that the representational geometries of layers 2 and 3 (but not layer 1) in this network are analogous to 389 
those in human V1-3 (Khaligh-Razavi and Kriegeskorte, 2014), so we focused our analyses on layers 2 and higher. 390 

We compared the network units with V1-2 and V4 neurons recorded in four electrophysiological studies; animals in these 391 
studies were trained to discriminate orientations of Gabor patches. Schoups et al. (2001) discovered an increase in the tuning 392 
curve slope at the trained orientation for units tuned to 12-20° away from trained orientation. The same group (Raiguel et 393 
al., 2006) later found in V4 a similar change along with other effects of training. These studies used a single-interval 2AFC 394 
training paradigm with implicit reference that was never shown. On the other hand, Ghose et al. (2012) used a two-interval 395 

2AFC training paradigm in which an irrelevant feature of the stimulus (spatial frequency) varied between two values through 396 
training. Contrary to Schoups et al. (2001), they did not find significant changes in V1-2 regarding orientation tuning (except 397 
one case), but the final discrimination thresholds reached by the subjects were higher. This group later revealed several 398 
changes in V4 using the same training paradigm (Yang and Maunsell, 2004). We hypothesized that the differences between 399 
these studies may be simply explained by differences in precision during training. To test this, we trained the network on a 400 
common task, the 2I-2AFC Gabor discrimination paradigm, and tested whether changing training precision, holding 401 
everything else constant, was sufficient to reconcile the gross differences observed between these studies.  402 

Overall, it appears that V1-2 only changed when the discrimination threshold was small (0.5-1.2° by Schoups et al., smaller 403 
than 3.3-7.3° by Ghose et al.), and V4 changed in both studies though the discrimination thresholds were similar to each 404 
other (1.9-3.0° by Raiguel et al. and 1.9-5.4° by Yang and Maunsell). Given the pattern of change in layer Fisher information 405 
demonstrated earlier (Figure 4), we hypothesized that  406 

a) the contradictory results in V1-2 (corresponding to lower layers in the network) were due to the mismatch of the 407 
final thresholds reached by the subjects in the two V1-2 studies, and  408 

b) the change in V4 (corresponding to higher layers in the network) should persist from fine to coarse precisions in 409 
which V1-2 did not change.  410 

To test the first hypothesis using the DNN model, we roughly matched the angle separations trained on the network with 411 
the discrimination thresholds reached by the monkeys, 1.0° for high and 5.0° for low precisions, and compared network 412 
units in layer 2 (layer 3 in Extended Data) with real V1-2 neurons. We then compared the tuning attributes of units in layer 413 
5 (layer 4 in Extended Data) with those of V4 neurons to test our second hypothesis. These choices were mainly motivated 414 
by previous research on comparing this particular network with the visual brain areas (Khaligh-Razavi and Kriegeskorte, 415 
2014; Guclu and van Gerven, 2015; Eickenberg et al., 2017). It should be noted that we used the same spatial frequency for 416 
the reference and target (more similar to Schoups et al. (2001) than to Ghose et al. (2002)); thus, while we found that 417 
modelling the differences in thresholds is sufficient to account for many differences in physiological findings between the 418 
four studies, it is likely that other task and stimulus differences also contributed to the different profiles of learning.  419 

Tuning curves were obtained from the units with receptive fields at the center of the image and are shown in Figure 6A for 420 

layers 2 and 5. Many of the layer-2 units showed bell-shaped tuning curves with clear orientation preferences, mirroring the 421 
reported similarity between these two layers with human early visual. In addition, there were also intriguing tuning curves 422 

that showed more than one tuning peaks, which may not be physiologically plausible. Tuning curves in layer 5 were harder 423 
to interpret with some units showing clear orientation tuning and the rest likely tuned to features other than Gabor patches.  424 

Lower layers trained under high precision (Schoups et al., 2001) 425 
We first investigated whether this DNN model could reproduce findings of Schoups et al. (2001) on V1 neurons, who found 426 
that monkeys obtained very small thresholds (around 1°) and V1 neurons showed a change in the slope of tuning curve at 427 

trained orientation for neurons tuned between 12-20° from trained orientation (Figure 6B). Similar to their procedure, we 428 
took the orientation of the maximum response of a unit as its preferred orientation and grouped all units by preferred 429 
orientation relative to trained orientation. The slope of the tuning curve at trained orientation was evaluated after 430 
normalization by maximum activation (as done for neural data in Schoups et al. (2011)). These results for layer-2 units 431 
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(Figure 6C) showed a similar slope increase for units tuned away from trained orientation, overlapping but broader than the 432 
range found in V1 neurons, when trained under high precision but not low precision.  433 

Despite a change in tuning slope, Schoups et al. (2001) found that the preferred orientations of neurons were evenly 434 
distributed over all orientations before and after training (Figure 6D). This was also the case for the network units which 435 
showed no significant difference between trained and naïve distributions of preferred orientation in either of the precisions 436 

(Figure 6E, p>0.9, K-S, see Extended Data Table 6-2 for details).  437 

Overall, these data from lower-layer units demonstrated an impressive qualitative similarity to data from Schoups et al. 438 
(2001) when the network was trained on high precision. We next look at the changes in low precision training. 439 

Lower areas trained under low precision (Ghose et al., 2002) 440 
Contrary to Schoups et al. (2001), Ghose et al. (2001) found very little change in V1-2 neurons after training. The tuning 441 

amplitude of V1 and V2 neurons tuned around the trained orientation did not differ significantly from other neurons after 442 
training (Figure 7A). However, the monkeys trained by Ghose et al. (2002) achieved relatively poorer discrimination 443 
thresholds (around 5°), and when we modelled this as low precision training, we also found no significant effect of preferred 444 
orientation on tuning amplitude at layers 2-3 (Figure 7B, p=0.30, Mann-Whitney U, see Extended Data Table 7-1 for 445 
details). In addition, Ghose et al. (2002) found no significant change in the variance ratio for V1-2 neurons (Figure 7C), 446 

which was replicated by our network units at both precisions (Figure 7D, p>0.6, Mann-Whitney U, see Extended Data Table 447 

7-2 for details).  448 

Ghose et al. (2002) did observe a decrease in the number of neurons tuned to the trained orientation in V1 but not in V2 449 
(not shown), contrary to Schoups et al. (2001). In our model, no such change was found in either high or low precision 450 
(Figure 6D); hence, here the model did not agree with the data.  451 

Thus, under low precision, we did not find significant changes in tuning attributes in lower layers, which was also the case 452 
for (Ghose et al., 2002) except for the preferred orientation distribution in V1. Together with the comparisons under high 453 
precision in the previous section, our first hypothesis was supported by our simulations. The key in replicating these data is 454 
the observation that the precision of training has a profound effect on the distribution of learning across layers. By 455 
accounting for the different orientation thresholds found across studies and labs, the DNN model can well address the 456 
different observations. In addition, the partial specificity of the network trained under low precisions (Figure 2B) did not 457 

require orientation-specific changes in lower layers, in line with previous models and data (Petrov et al., 2005; Sotiropoulos 458 
et al., 2011; Dosher et al., 2013). 459 

Higher layers compared to data of Raiguel et al. (2006) 460 
While neurons in primary visual cortex showed plasticity that was largely limited to high-precision conditions, neurons in 461 
V4 generally showed more susceptibility to VPL (Yang and Maunsell, 2004; Raiguel et al., 2006). We hypothesized that 462 

changes in V4 neurons should happen in both low and high precisions, and tested this hypothesis by comparing the tuning 463 
attributes of units in layer 5 (layer 4 in Extended Data) with recordings in those studies. 464 

We first compared the network units with the result of Raiguel et al. (2006) that, similar to V1 (Figure 6B), V4 neurons 465 
tuned 22-67° away from trained orientation significantly increased their slopes at trained orientation (Figure 8A). This effect 466 

was replicated in the model units (Figure 8B) which, unlike layer 2 (Figure 6C), showed significant increase in tuning slope 467 

not only in high but also in low precisions (p<0.0002, two-way ANOVA, see Extended Data Table 8-1 for details), although 468 
these units were tuned much closer to trained orientation than V4 neurons.  469 

Furthermore, in monkey V4, the distribution of preferred orientation became non-uniform after training (Figure 8C). In our 470 
model, this distribution also became significantly different from a uniform distribution as revealed by a K-S test in both 471 
conditions (p<0.003, K-S, see Extended Data Table 8-2 for details). This is in contrast to layers 2 which only show such a 472 
change for high precision (Figure 6E). There was also a substantial increase in the number of neurons tuned very close to 473 
trained orientation.  474 

The strength of orientation tuning, measured by the selectivity index defined in Equation 5, was found to increase after 475 
training in V4 (Figure 8E), and similar results were found in the model (Figure 8F) where SI increased significantly when 476 
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trained under high precision (p<0.0001) but not under low precision (p=0.10, Mann-Whitney U, see Extended Data Table 477 
8-3 for details). While these results suggest that higher-layer units became sharper after training when the precision was 478 
high, the shape of this distribution in layers 4 and 5 did not match real V4 neurons.  479 

Raiguel et al. (2006) also discovered that training reduced response variability at the preferred orientation quantified by the 480 
normalized variance (Figure 8G). We found the same in our model units (Figure 8H) at both precisions (p<0.001, Mann-481 

Whitney U, see Extended Data Table 8-4 for details), suggesting that noisy units in the lower layers might be rejected by 482 
higher ones (Dosher and Lu, 1998). 483 

Higher layers compared to data of Yang & Maunsell (2004) 484 
Finally, we address whether the network units also replicated the findings of Yang & Maunsell (2004) where monkeys 485 
achieved a threshold comparable with (Raiguel et al., 2006). Overall, in contrast to the V1 study from the same group (Ghose 486 

et al., 2002), Yang and Maunsell (2004) found many tuning changes in V4. First, tuning amplitude of V4 neurons increased 487 
significantly after training (Figure 9A), and the same was observed in the model under both precisions (p<0.0001, Mann-488 
Whitney U, see Extended Data Table 9-1 for details). Second, V4 neurons significantly lower their best discriminability 489 
(Figure 9C) after training (lower implies better discriminability), suggesting that finer orientation differences could be 490 
detected. Units in the model (Figure 9C) reproduced the same change in both precision levels (p<0.0005, Mann-Whitney 491 
U, see Extended Data Table 9-2 for details).  492 

Yang & Maunsell (2004) went on to show that these changes were not simply a result of the scaling, but rather the narrowing, 493 
of tuning curves (Figure 9E). In layer 5 of the model, the tuning widths of naïve units were already smaller than trained V4 494 
neurons; nonetheless, we found that, under high precision, the mean activation of layer-5 units (Figure 9F) in the non-495 
preferred orientation range (45° away from preferred orientation) was significantly more reduced than that in the preferred 496 
orientation range (within 45° of preferred orientation, p<0.0001, two-way ANOVA, see Extended Data Table 9-3 for 497 

details). 498 

More importantly, the mismatch in the tuning width between network units and real neurons could explain several 499 
quantitative discrepancies between model units and V4 neurons seen previously, including the different group of units that 500 
increased the tuning slope (Figure 8A and B), the sharp peaks in preferred orientation distributions (Figure 8C and D), and 501 
the higher selectivity index distributions than real neurons (Figure 8E and F). The existence of these narrow tuning curves 502 
and its consequences may require more accurate physiological measurements to verify. 503 

Therefore, multiple changes found in layer 5 at low precision provide strong evidence supporting our second hypothesis. 504 
To conclude the comparisons with physiological studies, we find that the DNN model replicates a number of the single cell 505 
results found in extant studies of primate visual cortex. In general, it appears that the network units increased their responses 506 
at orientations close to the trained orientation, providing more informative response gradients essential for performance. 507 
Changes are more substantial in higher layers through feedforward connections, resulting in sharper tuning curves, larger 508 
tuning amplitudes and a significant accumulation of tuning preference close to the trained orientation. Also, noisy neurons 509 
in lower layers may be rejected by higher ones after training, reducing response variability (Dosher and Lu, 1998). 510 
Nonetheless, it is important to note the quantitative differences in data between the DNN model and primates as noted in 511 
the comparisons above.  512 

Linking initial sensitivities to weight changes 513 

A key question to understanding learning in the DNN is the extent to which learning depends on the initial conditions of the 514 
network. Here, we focus on the first five layers and explore whether there is relationship between initial sensitivity to the 515 
trained orientation and weight changes.  516 

To test whether a larger layer sensitivity to the trained stimulus may give rise to more learning in the weights of this layer, 517 
we correlated the untrained layer FI with layer change measured by Equation 4. Although the network’s initial state was the 518 
same for all simulations, the reference orientations varied in 12 values to which the network were differentially sensitive. 519 

We used the following regression model to test the contributions of various factors 520 
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𝑑𝑟𝑒𝑙1 = 𝛽0 + 𝛽𝐹𝐼𝐹𝐼 +∑[𝛽𝑙 + 𝛽𝑙×𝐹𝐼𝐹𝐼]

5

𝑙=1

+∑[𝛽𝑠 + 𝛽𝑠×𝐹𝐼𝐹𝐼]

5

𝑠=1

 ( 7 ) 

where 𝛽𝐹𝐼 is the linear coefficient for FI, 𝛽𝑙 and 𝛽𝑠 are the main effects of layer and angle separation, respectively, each 521 

with 5 categorical levels, and 𝛽𝑙×𝐹𝐼 and 𝛽𝑠×𝐹𝐼 are the interactions of layer × FI and angle separation × FI, respectively. 522 

ANOVA on this model showed significant main effects of 𝛽𝑙 and 𝛽𝑠 (p<0.0001) which accounted for 21% and 46% of 523 
variance, but the three effects involving FI were insignificant (p>0.1, see Extended Data Table 10-1 for details). This means 524 
that the weights in a layer did not change more when it was more sensitive to the trained reference orientation.  525 

To test whether a larger unit sensitivity to the trained stimulus may give rise to more learning in the weights of the unit, we 526 
used the untrained fisher information of the units (tuning gradient squared divided by variance at the trained orientation) as 527 
a proxy for sensitivity, and correlated this with their weight changes. We show in Figure 10B the relationship between these 528 
two quantities for each training condition after rescaling. The correlations were generally small except at layer 5, and despite 529 
the positive correlation (consistent to that observed in Raiguel et al. (2006)), there was a tendency for less sensitive units to 530 
also change substantially. Neurons in layer 3 showed the lowest correlation compared with those in other layers even though 531 
this layer had the highest pre-train FI. The same regression analyses above revealed that all effects were significant 532 
(p<0.0001, see Extended Data Table 10-2 for details), but layer and angle separation explained 2.6% and 12.4% of the 533 
variance in weight change, whereas the effects involving FI (𝛽𝐹𝐼, 𝛽𝑙×𝐹𝐼 and 𝛽𝑠×𝐹𝐼) together explained 1.1%. In addition, we 534 

also saw that the distribution of FI became more spread-out after training (Figure 10C), particularly for higher layers, 535 
suggesting that training did not improve FI for all units equally. Under the finest precision, there was a positive correlation 536 
between the initial untrained FI and change in FI in the five layers (0.1-0.5, p<0.0001).  537 

Therefore, although the network’s initial sensitivity to the trained orientation might influence the magnitude of learning, its 538 
effect size was less considerable compared to layer and training precision. On the layer level, a higher initial sensitive 539 
lowered the amount of learning; and on the unit level, the effect of initial sensitivity on learning was mixed.  540 

Discussion 541 

We find that the DNN model studied here is a highly suitable model to investigate visual perceptual learning. On the 542 
behavioral level, when the network was trained on Gabor orientation discrimination, the network’s initial performance, 543 
learning rate and degree of transfer to other reference orientations or spatial frequencies depended on the precision of the 544 

stimuli in a similar manner as found in behavioral and theoretical accounts of perceptual learning. We found slower learning 545 
with less transfer under finer training precision as predicted by Reverse Hierarchy Theory (Ahissar and Hochstein, 1997; 546 
Ahissar and Hochstein, 2004); however, the model also suggests that test precision had a major influence on the transfer 547 
performance and was able to account for greater transfer from precise to coarse stimuli (Jeter et al., 2009). This model 548 
makes the novel prediction that high-precision training transfers more broadly to untrained and coarse orientation 549 

discriminations than low-precision training. On the layer level, increasing the task precision resulted in slower but more 550 

substantial changes in lower layers. In addition, learning to discriminate more complex features (e.g. face gender 551 
discrimination) resulted in relatively greater changes in higher layers of the network. On the unit level, only high-precision 552 
tasks significantly changed tuning curve attributes at lower layers, whereas units in the higher layers showed more robust 553 
changes across precisions. Various changes found in the network units mirrored many electrophysiological findings of 554 

neurons in monkey visual cortex. Overall, this DNN model, while not originally designed for VPL, arrived at impressively 555 

convergent solutions to behavioral, layer-level and unit-level effects of VPL found in the extant literature of theories and 556 
experiments.  557 

The present findings help reconcile disparate observations in the literature regarding the plasticity in early visual cortex. 558 
While Schoups et al. (2001) found changes in orientation tuning curves of neurons in primary visual cortex, these results 559 
were not replicated by Ghose et al. (2002). The DNN model provides a parsimonious explanation for these results, 560 
accounting for the discrepancy as related to the different discrimination thresholds reached by the subjects between those 561 
experiments. In Schoups et al. (2001), the subjects reached lower thresholds than those in Ghose et al. (2002), which was 562 
sufficient to move plasticity down to the lower layers of the DNN model. Furthermore, through a number of observations 563 
on higher-layer units that were similar to V4 neurons, the model verified our hypothesis that these neurons are more 564 
susceptible to changes after VPL even under low precisions. 565 
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Compared to a shallower model that would have no problem learning the tasks, a deeper network has the advantage of 566 
demonstrating the distribution of learning over finer levels of hierarchy. Also, it serves as an example where recurrent or 567 
feedback processes may not be necessary to capture the distribution and order of learning over layers, as lower layers 568 
changed before higher layers in the absence of inhomogeneous learning rate or attentional mechanisms. Moreover, despite 569 
its biological implausibility, weight sharing in the convolutional layers did not result in substantial unwanted transfer over 570 
reference orientation or spatial frequency in this study; location specificity was also demonstrated in a shallow convolutional 571 

network (Cohen and Weinshall, 2017), although breaking this weight sharing may still be necessary to better interpret 572 
learning. 573 

Despite the striking resemblance between the DNN model output and primate data, it is worth noting that a number of 574 
choices we made regarding training paradigm, noise injection, learning rule and learning rate may have significant 575 
consequences to the results reported here. First, the network was trained on fixed differences which differed from using 576 

staircases as done in many VPL studies; the 2I-2AFC procedure, which avoided explicit definition of label in transfer, may 577 
produce different learning outcomes compared to the 2AFC without a reference used by Schoups et al. (2001) or the varied 578 
spatial frequencies used by Ghose et al. (2002). Second, there was no source of internal noise in the middle layers to generate 579 
behavioral variability (Acerbi et al., 2014), and the readout weights were zero-initialized to minimize learning variability in 580 
contrast to previous network models that used random initialization to simulate multiple subjects (Sotiropoulos et al., 2011; 581 
Talluri et al., 2015). Third, our learning rule SGD does not compare favorably with Hebbian-like learning methods 582 
(Sotiropoulos et al., 2011; Dosher et al., 2013; Talluri et al., 2015) that are more biologically plausible, although more 583 
biologically plausible versions have been proposed (Lillicrap et al., 2016; Scellier and Bengio, 2017). Other studies 584 
suggested that small differences in training paradigms, including precision as shown in the present data, can have a 585 
significant impact on learning and plasticity (Hung and Seitz, 2014), and it will be important target for future studies to 586 
research the contributions of the numerous other differences between these studies. 587 

Another issue regards the distinction between representation learning in the lower layers and task or decision learning in the 588 
readout layer. This DNN can perform very well even if only the final layer is plastic, in which case both forms of learning 589 
are mixed into the same layer. In our simulations, the use of a small learning rate was necessary to ensure learning stability 590 
on precise tasks, but this also had the effect of distributing more change to the lower layers. Other schemes can be used to 591 
control learning between layers, such as pre-training on an easier task or readout weight regularization. Direct connections 592 
from lower layers to the readout layer are also possible given a reasonable weight initialization. Future research will be 593 

necessary to examine the consequence of such alternative schemes on the predictions regarding distribution of learning. 594 

A long-standing topic in research of neural coding regards the efficiency of sparse representations in visual cortex (Barlow, 595 
1961; Olshausen and Field, 1997). This raises a question of whether perceptual learning “raises all boats” or “makes the 596 
rich get richer” and mostly the best tuned neurons change the most. Some support for the latter possibility is found in 597 
physiological studies where neural responses changed primarily in the most informative neurons. The present DNN model 598 

appears insufficient to well-address sparsity in learning. While we found (Figure 10) small positive correlations between 599 
initial Fisher information and weights changes from training, consistent with the notion of “the rich get richer”, there were 600 
also substantial changes in many of the insensitive units across layers. This may be due to the fact that the network was only 601 
trained on one task and was not consistently performing the many visual tasks involving natural stimuli that humans and 602 
animals must perform on a daily basis. Hence, to better address learning sparsity, a network may need to be trained 603 
simultaneously on a number of tasks. 604 

Furthermore, one must be cautious in inferring homologies between layers of DNNs and areas in the brain. The similarity 605 
between the network and visual areas depends on the layer parameters (such as number of filters, receptive field size, etc.) 606 
in a subtle manner (Pinto et al., 2009; Yamins and DiCarlo, 2016). It is also unknown how much our analyses on the changes 607 
in the weights (instead of unit activity) can inform us about the synaptic changes caused by VPL. Comparing results across 608 
different DNNs may help us understand which results are robust against details of model architecture.  609 

The simulations shown in the present manuscript just touched the surface of the vast VPL literature. While beyond the scope 610 
of the present study, future modeling targets can be considered in pursuit of many of perceptual learning phenomena. For 611 
example, DNNs may be used to replicate other psychophysical phenomena, including disruption (Seitz et al., 2005), roving 612 
(Zhang et al., 2008; Tartaglia et al., 2009; Hussain et al., 2012), double training (Xiao et al., 2008; Zhang et al., 2010) and 613 
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the effects of attention (Ahissar and Hochstein, 1993; Byers and Serences, 2012; Bays et al., 2015; Donovan et al., 2015) 614 
and adaptation (Harris et al., 2012). Moreover, small variations in training procedures can lead to dramatic changes in 615 
learning outcome (Hung and Seitz, 2014); therefore, it is important for future simulations to understand how such details 616 
may impact learning in DNNs. 617 

In addition, DNNs may provide a straightforward way to model the ‘when’ and ‘where’ aspects of VPL that would be 618 

otherwise difficult to test experimentally on subjects. As discussed in previous reviews (Seitz, 2017; Watanabe and Sasaki, 619 
2015), it is likely that VPL involves more areas than the two or three-layer models of pattern-matching representation and 620 
nonlinear readout that typify the field (Dosher and Lu, 2017). The distribution and timecourse of plasticity could be further 621 
examined in other tasks, using other DNNs or layer change measures. 622 

In conclusion, we find that deep neural networks provide an appropriate framework to study VPL. An advantage of DNNs 623 

is that they can be flexibly adapted to different tasks, stimulus types and training paradigms. Also, layer- and unit-specific 624 
changes resulting from learning can be examined and related to fMRI and electrophysiological data. While some caution is 625 
needed in interpreting the relationship between these models and biological systems, the striking similarities with many 626 
studies suggests that DNNs may provide solutions to learning and representation problems faced by biological systems and 627 
as such may be useful in generating testable predictions to constrain and guide perceptual learning research within living 628 
systems.  629 
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Figure 1.  Model structure and stimulus examples. A, Model architecture and a pair of Gabor stimuli. The network consists of two 
identical processing streams producing scalar representations, one for the reference hr and the other for the target ht, and the 
difference of the two is used to obtain a probability of the target being more clockwise p(CW) through the sigmoid function. Darker 
colors indicate higher layers. Layers 1 to 5 consists of multiple units arranged in retinotopic order (rectangles) and convolutional 
weights (triple triangles, not indicative of the actual filter sizes or counts) to their previous layers or image, and layer 6 has a single 
unit (dark orange circles) fully connected to layer-5 units (single triangles). Weights at each layer are shared between the two 
streams so that the representations of the two images are generated by the same parameters. Feedback is provided at the last 
sigmoidal unit. The Gabor examples have the following parameters: reference orientation: 30°, target orientation: 20°, contrast: 
50%, wavelength: 20 pixels, noise standard deviation: 5. B, Face examples morphed from three males and three females. The 
reference (ref) is paired with either a more masculine (M) or more feminine(F) target image, both morphed from the same two 
originals (M5 and F5) with the reference being the halfway morph. The number following the label indicates dissimilarity with the 
reference. 
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Figure 2.  Performance of the model when trained under various angle separations and tested at the trained and transfer 
conditions: reference orientation rotated clockwise by 45 (ori + 45) or 90° (ori + 90) and spatial frequency halved (SF × 
0.5) or doubled (SF × 2.0). See Extended Data Table 2-1 for statistical details. A, Accuracy (top row) and transfer index 
(bottom row) trajectories against training iterations. Darker blue indicates finer precision. Error envelope represents 1 
sem and is hardly visible. See Extended Data Figure 2-1 for accuracies plotted as mean±std during the first 50 iterations. 
B, Final performance under the four transfer conditions. There was a significant positive main effect of log angle 
separation in each of the four transfer conditions (p<0.0001, R2>0.2 in all conditions), indicating greater transfer for 
coarser precisions. Error bar indicates 1 std. C, Final mean accuracies when the network was trained and tested on all 
combinations of training and test precisions. The diagonal lines in the four transfer conditions indicate equal training 
and test precision for which the accuracies are also shown in panel B. For each transfer condition, there was a strong 
positive main effect of log test separation (p<0.0001, R2>0.35 in all conditions) shown as increasing color gradient from 
bottom to top, and the log training separation also had a weaker but significant negative effect (p<0.0001 in all 
conditions, R2>0.05 in all conditions except for angle+90 where R2=0.018) shown as decreasing color gradient from left 
to right. Higher training precisions enhanced performance at transfer to low precisions, shown as higher accuracy on 
top-left quadrants compared to lower-right quadrants. 
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Figure 3.  Layer change under different training precisions. A, Layer change (Equation 4) trajectories during learning. 
Lighter colors indicate larger angle separations. One-sem envelops are hardly visible. B, Iteration at which the rate of 
change peaked (peak speed iteration, PSI). Excluding layer 6, there were significant negative main effects of log angle 
separation (β=-37.24, t(14397)=-100.02, p≈0.0, R2=0.41) and layer number (β=-1.07, t(14397)=-8.73, p=2.9×10-18, 
R2=0.0031) on PSI, suggesting that layer change started to asymptote earlier in higher layers and finer precisions. For 
individual precisions, layer number had a significant effect only for the two smallest angle separations (p<0.0001, see 
Table 3-1 for details). C, Final layer change. Ignoring layer 6, for which the change was measured differently, a linear 
regression analysis on the logarithm of layer change yielded significant negative main effects of log angle separation 
(β=-1.0, t(14397)=-208.4, p≈0.0, R2=0.66) and layer number (β=-0.15, t(14397)=-91.2, p≈0.0, R2=0.13), implying greater 
layer change in lower layers and finer precisions. D, Ratio of final layer change relative to the change under the easiest 
condition (10.0°). Changes in lower layers increased by a larger factor than higher layers when precision was high. B-D, 
Error bar represents 1 sem.  
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Figure 4.  Linear Fisher information (FI) defined in Equation 6 of the trained (black) and naïve (gray) populations at each 
layer and each test orientation and when trained at each precision. Only units with receptive fields at the center of the 
image and with minimum activation of 1.0 are included. (*) indicates significant increase in mean FI within 10° of the 
trained orientation (threshold p=0.01, Mann-Whitney U, Bonferroni-corrected for 5 layers × 5 angle separations). The 
oscillations were caused by pooling over 12 reference orientations and the inhomogeneity in orientation sensitivity of 
AlexNet. The FI values at layer 5 do not reflect real discrimination thresholds because the readout was noisy.  
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Figure 5.  Effect of different tasks (Gabor orientation and face gender discriminations) on performance and layer change. 
A, Accuracy drop as successive low layers were frozen at the iteration where the fully plastic network reached 95% 
accuracy for the two tasks. (*) indicates significant drop from zero (threshold p=0.01, 1-sample t-test against zero, 
Bonferroni-corrected for 5 frozen layers × 5 dissimilarities). Performance was impaired when freezing layer 2 onwards 
in the Gabor task and when freezing layer 4 onwards in the face task. The largest incremental performance drop 
happened in layer 3 for the Gabor task and layer 5 for the face task. B, Distribution of learning over layers when the 
network was trained on the two tasks if the network was fully plastic (left) or if layer 1 was frozen (right). There was a 
significant interaction of layer × task on layer change proportion (p<0.0001, 2-way ANOVA, see Extended Data Table 5-
1 for details). See Extended Data Figure 5-1 for demonstration of robustness to other measures of layer change. (*) 
indicates significant difference in the layer change proportion between the two tasks (threshold p=0.01, Mann-Whitney 
U, Bonferroni-corrected for 5 or 4 layers). Error bar represents 1 sem. 
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Figure 6.  A, Tuning curve examples of network units before (gray dashed) and after (black solid) training in layers 2 and 
5. B-E, Comparison between V1 neurons trained under high precision in Schoups et al. (2001) with model units in layer 
2 trained under high (1.0°, matching with experiment) and low (5.0°) precisions. B, Slope at trained orientation for 
trained and naïve V1 neurons grouped according to preferred orientation. C, Same as B but from model units. Units 
tuned around 20° increased their slope magnitude at trained orientation only under high precision. See Extended Data 
Table 6-1 for statistical test details; see Extended Data Figure 6-1 for layer 3 and other precisions. D, Distribution of 
preferred orientation in V1 was roughly uniform before and after training. E, Same as D but from model units. There 
was no significant difference in the distribution of preferred orientation between the trained and naïve populations 
under either of the two precisions (p>0.9, K-S, see Extended Data Table 6-2 for details; see Extended Data Figure 6-2 
for layer 3 and other precisions). B and D, Reproduced from Schoups et al. (2001) 
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Figure 7.  Comparison between V1-2 neurons trained under low precision in Ghose et al. (2002) with model units in 
layers 2 and 3 trained under high (1.0°) and low (5.0°, matching with experiment) precisions. Black bar indicates the 
orientation bin that contains the trained orientation. A, No significant effect of preferred orientation was found on 
tuning amplitude. B, Same as A but from model units. Preferred orientation had a significant effect only in layer 3 when 
trained under high precision (p<0.0001, one-way ANOVA, see Extended Data Table 7-1 for details; see Extended Data 
Figure 7-1 for layer 3 and other precisions). C, No significant effect of preferred orientation was found on variance ratio. 
D, Same as C but from model units. No significant effect of preferred orientation was found on variance ratio (p>0.6, 
one-way ANOVA, see Extended Data Table 7-2 for details; see Extended Data Figure 7-2 for layer 3 and other precisions) 
for either layer and precision. A and C, Reproduced from Ghose et al. (2002) 
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Figure 8.  Comparison between V4 neurons in Raiguel et al. (2006) with model units in layer 5 trained under high (1.0°) 
and low (5.0°) precisions. Black and white bars indicate trained and naïve populations, respectively. A, Neurons tuned 
22-67° away from trained orientation increased their slopes at trained orientation. (*) indicates significant increase in 
slope before and after training. B, Same as A but from model units. There was a significant interaction of training × 
preferred orientation under either of the precisions (p<0.0002, two-way ANOVA, see Extended Data Table 8-1 for 
details; see Extended Data Figure 8-1 for layer 4 and other precisions). (*) indicates significant increase in slope before 
and after training (threshold p=0.01, Mann-Whitney U, Bonferroni-corrected for 6 orientation bins). Only neurons tuned 
within 48° of trained orientation are shown; other neurons did not change significantly after training. C, Distribution of 
preferred orientation shifted away from uniform after training. D, Same as C but from model units. The units under 
both precisions altered their preferred orientation distribution which became significantly different from a uniform 
distribution (p<0.003, K-S, see Extended Data Table 8-2 for details; see Extended Data Figure 8-2 for layer 4 and other 
precisions). E-H, Black and gray dashed lines indicate trained and naïve distribution means, respectively. E, Selectivity 
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index of V4 neurons increased significantly after training. F, Same as E but from model units. Training produced a 
significant increase in selectivity index under high precision (p<0.0001, Mann-Whitney U, see Extended Data Table 8-3 
for details; see Extended Data Figure 8-3 for layer 4 and other precisions). G, Training significantly reduced normalized 
variance of V4 neurons. H, Same as G but from model units. Normalized variance was significantly reduced after training 
under both precisions (p<0.001, Mann-Whitney U, see Extended Data Table 8-4 for details; see Extended Data Figure 8-
4 for layer 4 and other precisions). A, C, E and G, Reproduced from Raiguel et al. (2006) 
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Figure 9.  Comparison between V4 neurons in Yang & Maunsell (2004) with model units in layer 5 trained under high 
(1.0°) and low (5.0°) precisions. A-D, Black and white bars indicate trained and naïve populations, respectively; black 
and gray dashed lines indicate trained and naïve distribution medians, respectively. A, Training significantly increased 
the tuning amplitude of V4 neurons. B, Same as A but from model units. Training significantly increased response 
amplitude for both precisions (p<0.0001, Mann-Whitney U, see Extended Data Table 9-1 for details, see Extended Data 
Figure 9-1 for layer 4 and other precisions). C, Training produced a significant reduction in best discriminability (lower 
indicates better discriminability) for V4 neurons. D, Same as B but from model units. Training significantly reduced the 
best discriminability for both precisions (p<0.0005, Mann-Whitney U, see Extended Data Table 9-2 for details; see 
Extended Data Figure 9-2 for layer 4 and other precisions). E, Training resulted in narrower normalize tuning curves (by 
maximum response). F, Same as E but from model units. Activation was significantly lower after training for the non-
preferred orientation range (>45° away of trained orientation) than preferred orientation range in high precision 
(p<0.0001, two-way ANOVA, see Extended Data Table 9-3 for details; see Extended Data Figure 9-3 for layer 4 and other 
precisions). Red lines indicate orientations with significant reduction in activation (threshold p=0.01, Mann-Whitney U, 
Bonferroni-corrected for 100 test orientations). Curves are mean with one-sem envelope. A, C, E and G, Reproduced 
from Yang & Maunsell (2004). 
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Figure 10.  A-B, Effect of the network’s initial sensitivity to trained orientation (TO) on the magnitude of learning. A, 
Relationship between layer weight change and layer-wise pre-train linear fisher information at TO (FI). Color indicates 
different layers, and darker color indicates higher training precision. Using a regression analysis on the layer change 
under the main effects of layer, precision, FI and the interactions of layer × FI and precision × FI, the effects of layer and 
precision were significant (p<0.0001) while the main effect of FI and its two-way interactions with layer and precision 
were not (p>0.1, see Extended Data Table 10-1 for details; see Extended Data Figure 10-1 for results under different 
measures of weight change). B, Relationship between the change in the weights and pre-train FI at TO for network units, 
both of which are rescaled to between 0 and 1 after dividing by the respective maximum change for each angle 
separation and each layer. Significant Pearson’s correlation is shown for each layer and angle separation (Bonferroni-
corrected for 5 layer × 5 angle separations). Despite the general positive correlation, there was a tendency for units 
with lower FI to change more when training precision increased. C, Distribution of network unit fisher information at 
TO (FI) before (white) and after (black) training. In layers 1 to 2, most units had very low FI before and after training, 
whereas the distributions for units in layers 3 and 4 are more spread-out and training increased FI for many neurons. 


