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Summary Survival often depends on the ability to accurately track and learn the behaviour of a la-
tent feature in the world—for example, the movement of a predator or prey—from noisy and incomplete
sensory data. The statistical computations that would guarantee accuracy are well understood. As new
noisy sensory information arrive, an agent or organism must integrate this information with its current
belief about the latent quantity to form an updated representation. The form of this update depends on
an internal model of how the quantity being tracked is likely to change in time. In general, this model
will itself be uncertain, and thus must be adapted on the basis of the incoming sensory data (and the
updated beliefs inferred therefrom) to ensure consistency with external world. In all but the most trivial
of cases, accurate internal models and beliefs must be probabilistic, and cannot be summarised by the
evolution of simple point estimates, such as the mean, alone. Here, we propose a biologically plausible
inference and learning algorithm that relies on a deterministic representations of probabilistic beliefs using
the distributed distributional code (DDC; Vértes and Sahani, 2018). We demonstrate empirically that the
flexibility of the DDC makes possible accurate inference and learning in nonlinear settings; that synaptic
weights for computation can be trained using a biologically plausible delta rule; that no explicit distribu-
tional assumptions are required; that the statistics of the latent variables are readily accessible from the
representation; and finally that recognition can adapt to new problems through learning a flexible internal
model of the observations.

Details The brain needs to process a stream of noisy and ambiguous signals in the dynamical environ-
ment, extracting unobserved but biologically relevant information in real time. The computations that
underlie such an ability can be understood using the framework of optimal inference under a statistical
generative model of the observations. We assume that the brain can simulate generative models expressed
as a discrete-time exponential family state-space model with latent variable zt:

p(zt|zt−1) = exp [gz(zt−1,θz) · Tz(zt)− Φ(zt−1,θz)] (1)

p(xt|zt) = exp [gx(zt,θx) · Tx(xt)− Φ(zt,θx)] (2)

where g is a natural parameter that depends on the model parameters θ and the conditioning variables,
T is a vector of sufficient statistics and Φ is the log normaliser.

How can we do inference on this model? We illustrate our approach with a hypothetical example
of a predator tracking a prey that moves between the two commonly visited locations zt. In order to
accurately track its true location efficiently in real time given noisy sensory data xt, such as sound caused
by moving in a forest, the predator needs to solve the filtering problem: given the belief about the the prey’s
location based on previous observations, update the belief when new sound arrives. It is then necessary for
the predator’s brain to represent the posterior distribution of location p(zt|x1:t) which can be accurately
updated and allows optimal computations of downstream tasks, such as planning to catch the prey.

Distributed representation We propose that neurons in the predator’s brain represent in their firing
rates the uncertainty about the prey’s locations p(z) in a DDC [2], that is by nonlinear moments or
expectations of a set of nonlinear functions: rz =

∫
ψ(z)dp(z) = 〈ψ(z)〉. Such a representation makes

it possible to approximate the expectation of other functions in the downstream computation linearly: if
h(z) ≈

∑
i αiψi(z), then 〈h(z)〉p(z) ≈

∑
i αiri = αᵀrz.

DDC filter To compute a DDC of the prey’s location, assuming for now that the predator has a perfect
internal model of the prey’s movement and sound generation, the predator would first simulate these signals
in the brain, producing neural activities that correspond to location ψ(zt) and those that correspond to
auditory inputs φ(xt) (Figure 1A, Left). A recognition network is then trained to predict ψ(zt) from φ(xt)
and the previous belief of the prey’s location rt−1. When the squared error is minimised, this network
predicts the posterior means of the latent activations given the simulated inputs and the previous belief.



These posterior means form a DDC for the posterior distribution of zt given sound history (Figure 1A,
Middle).

The optimal recognition network can be approximated by a simple form: r
(i)
t =

∑
j,kW

(ijk)
t r

(j)
t−1φk(xt).

This computation can be implemented by an intermediate neural population that combines activities
encoding the previous belief and neural responses to sensory input, which are then linearly weighted by
the filtering operator W . The filtering operator is trained using the delta rule given examples provided
by sampling and bootstrapping: at each time step, the predator generates triplets {zt−1, zt,xt} from the
generative model and also use the previously estimated DDC rt−1. On a nonlinear dynamical system
adapted from [1], we find that the DDC filter estimates the posterior mean of the prey’s location nearly
optimally over a wide range of parameters θ (Figure 1B,C).

Adapting to new dynamics The predator is able to adapt to the dynamics generated by different
kinds of prey, and the internal model is likely to have a flexible structure to simulate many movement
patterns. We assume that this flexible dynamics has a mean function in the form of a linear readout
from Gaussian-shaped tuning functions. The predator would then learn the dynamics of different types of
prey by adjusting the readout weights. We simulate learning of the predator using an online sequence of
observations from the nonlinear SSM in [1], assuming that the predator knows only the dimensionality of
the latent variable, functional form of the sound generation mechanism but not its parameters θx which
also need to be learned. The posterior statistics required for learning θ are again approximated from the
DDC basis functions Figure 1A (Right). After each update in θ, the filtering operator W is adjusted using
samples given the new θ and previous belief, resulting in a wake-sleep like algorithm. Figure 1D-G show
the result of learning.
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Figure 1: (A) (Left) Samples from the generative model and previous belief on simulated sequences (blue)
are used to train the filter operator. (Middle) Filtering on the observed sequence given a real (red) ob-
servation (also performed on simulated observations to update belief). (Right) Adaptation using statistics
calculated from posterior beliefs and observations. (B) Posterior mean of the DDC filter follows closely
to that of a particle filter (PF). (C) Variance in the latent zt explained by PF and DDC filter with 3,
10, or 100 samples from generative model with different parameters. (D) Adapting the generative model
parameters to a new prey. (Left) Before learning, the DDC filter and PF are equally bad at tracking zt.
(E) After learning, the DDC filter accurately tracks zt and performs close to PF given the true generative
parameters. (F) Parameters during learning. Colored: learned (solid) and true (dotted) values of θx.
Black: linear weights on Gaussian tuning functions. (G) The learned mean function is close to the true
one. Histogram shows distribution of zt
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