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Inference using an internal model (Helmholtz machine)

static world

p(z,x) −→ r(·)
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Introduction

Illusion 2: cutaneous rabbit

In the course of designing some experiments on the
cutaneous perception of mechanical pulses delivered
to the back of the forearm, it was discovered that,
under some conditions of timing, the taps produced
seemed not to be properly localized under the
contactors. [...] They will seem to be distributed,
with more or less uniform spacing, from the region
of the �rst contactor to that of the third. There is

a smooth progression of jumps up the arm, as

if a tiny rabbit were hopping from elbow to wrist.

Geldard & Sherrick, 1972, Science
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Introduction

In those examples:

Percept of the past is changed by new, future observation

�Law of Continuity�

What could be the neural basis for these statistical computation?

representing beliefs as distributional objects

updating beliefs of the past based on new evidence in real time?

learning to do all the above

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 6 / 20



Introduction

In those examples:

Percept of the past is changed by new, future observation

�Law of Continuity�

What could be the neural basis for these statistical computation?

representing beliefs as distributional objects

updating beliefs of the past based on new evidence in real time?

learning to do all the above

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 6 / 20



Introduction

In those examples:

Percept of the past is changed by new, future observation

�Law of Continuity�

What could be the neural basis for these statistical computation?

representing beliefs as distributional objects

updating beliefs of the past based on new evidence in real time?

learning to do all the above

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 6 / 20



Introduction

In those examples:

Percept of the past is changed by new, future observation

�Law of Continuity�

What could be the neural basis for these statistical computation?

representing beliefs as distributional objects

updating beliefs of the past based on new evidence in real time?

learning to do all the above

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 6 / 20



Introduction

In those examples:

Percept of the past is changed by new, future observation

�Law of Continuity�

What could be the neural basis for these statistical computation?

representing beliefs as distributional objects

updating beliefs of the past based on new evidence in real time?

learning to do all the above

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 6 / 20



Introduction

In those examples:

Percept of the past is changed by new, future observation

�Law of Continuity�

What could be the neural basis for these statistical computation?

representing beliefs as distributional objects

updating beliefs of the past based on new evidence in real time?

learning to do all the above

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 6 / 20



Introduction

In those examples:

Percept of the past is changed by new, future observation

�Law of Continuity�

What could be the neural basis for these statistical computation?

representing beliefs as distributional objects

updating beliefs of the past based on new evidence in real time?

learning to do all the above

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 6 / 20



Distributed distributional code

2. Distributed distributional code

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 7 / 20



Distributed distributional code

DDC: a framework for neural representation of uncertainty

A DDC encodes a probability distribution:

q(z)

by a set of tuning functions

γ(z) := [γ1 (z) , γ2 (z) , γ3 (z) , ..., γK (z)]

into a set of expectations

r := Eq(z) [γ1 (z) , γ2 (z) , ..., γK (z)]

Zemel, Dayan & Pouget (1998); Sahani & Dayan (2003),
Vértes & Sahani (2018)
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1 2 ... K
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[ ], , , , , , , ,

1 2 ... K
[ ]

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 8 / 20



Distributed distributional code

DDC: a framework for neural representation of uncertainty

A DDC encodes a probability distribution:

q(z)

by a set of tuning functions

γ(z) := [γ1 (z) , γ2 (z) , γ3 (z) , ..., γK (z)]

into a set of expectations

r := Eq(z) [γ1 (z) , γ2 (z) , ..., γK (z)]

Zemel, Dayan & Pouget (1998); Sahani & Dayan (2003),
Vértes & Sahani (2018)

, , , , , , , ,
1 2 ... K
[ ]

, , , , , , , ,
1 2 ... K
[ ], , , , , , , ,

1 2 ... K
[ ]

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 8 / 20



Distributed distributional code

DDC: a framework for neural representation of uncertainty

A DDC encodes a probability distribution:

q(z)

by a set of tuning functions

γ(z) := [γ1 (z) , γ2 (z) , γ3 (z) , ..., γK (z)]

into a set of expectations

r := Eq(z) [γ1 (z) , γ2 (z) , ..., γK (z)]

Zemel, Dayan & Pouget (1998); Sahani & Dayan (2003),
Vértes & Sahani (2018)

, , , , , , , ,
1 2 ... K
[ ], , , , , , , ,

1 2 ... K
[ ]

, , , , , , , ,
1 2 ... K
[ ]

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 8 / 20



Distributed distributional code

DDC: a framework for neural representation of uncertainty

A DDC encodes a probability distribution:

q(z)

by a set of tuning functions

γ(z) := [γ1 (z) , γ2 (z) , γ3 (z) , ..., γK (z)]

into a set of expectations

r := Eq(z) [γ1 (z) , γ2 (z) , ..., γK (z)]

Zemel, Dayan & Pouget (1998); Sahani & Dayan (2003),
Vértes & Sahani (2018)

, , , , , , , ,
1 2 ... K
[ ], , , , , , , ,

1 2 ... K
[ ], , , , , , , ,

1 2 ... K
[ ]

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 8 / 20



Distributed distributional code

DDC: a framework for neural representation of uncertainty

A DDC encodes a probability distribution:

q(z)

by a set of tuning functions

γ(z) := [γ1 (z) , γ2 (z) , γ3 (z) , ..., γK (z)]

into a set of expectations

r := Eq(z) [γ1 (z) , γ2 (z) , ..., γK (z)]

Zemel, Dayan & Pouget (1998); Sahani & Dayan (2003),
Vértes & Sahani (2018)

, , , , , , , ,
1 2 ... K
[ ], , , , , , , ,

1 2 ... K
[ ], , , , , , , ,

1 2 ... K
[ ]

Kevin Li, Maneesh Sahani (Gatsby Unit, UCL) Model of recognition and postdiction January 6, 2020 8 / 20



Distributed distributional code

Why DDC? It can encode a large family of distributions

given Eq [γk (z)] = rk, ∀k ∈ {1, 2, . . .K}

q(z) = arg maxH[q]

=
1

Z(r)
exp

[∑
k

θk(r)γk(z)

]
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Distributed distributional code

Why DDC? It makes computation simple for neurons

r := Eq(z) [γ1 (z) , γ2 (z) , ..., γK (z)]

r := Eq(z) [γ1 (z) , γ2 (z) , ..., γK (z)]

Key computations involve expected values:

Message passing:
q(z2) = Eq(z1) [p(z2|z1)]

Marginalization:

q(z2 ∈ (a, b)) = Eq(z1,z2) [1(a < z2 < b)]

Action evaluation:
Q(a) = Eq(s) [R(s, a)]

How to compute E [h(z)]?

if h(z) ≈
∑
i

αiγi(z)⇒ E [h(z)] ≈
∑
i

αiri

, , , , , , , ,
1 2 ... K
[ ]
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Distributed distributional code

Why DDC? It allows biologically plausible learning to infer

Previously, we saw marginal q(z)↔ Eq(z) [γ(z)]

For p(z,x) = p(z)p(x|z), p(z|x) is intractable

How to obtain approx. q(z|x)↔ Eq(z|x) [γ(z)]?

Clue: posterior mean...

Ep(z|x) [γ(z)] = arg min
φ

Ep(z|x)
�
‖γ(z)− φ‖22

�

�Amortize� using φW (x) := Wσ(x)

W ∗ = arg min
W

Ep(z,x)
�
‖γ(z)−Wσ(x)‖22

�

r(x) := W ∗σ(x) = Eq(z|x) [γ(z)]

Find W ∗ by the delta rule:

∆W ∝ (γ(z)− φW (x))σ(x)ᵀ, {z,x} ∼ p
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Distributed distributional code

DDC Summary

De�nition

DDC of q(z) associated tuning functions γ(z) is r := Eq(z) [γ(z)]

MaxEnt interpretation

r
E[γ(z)]

↼−−−−−−−−−−−−−−−−⇁
γ(z),MaxEnt

q(z) ∝ exp [θ · γ(z)]

Expectation approximation
h(z) ≈ α · γ(z) =⇒ E [h(z)] ≈ α · r

Learning to infer given p(z, x)

r(x) = Eq(z|x) [γ(z)] = W ∗σ(x), ∆W ∝ (γ − φW )σᵀ, {z,x} ∼ p(z,x)
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Online recognition and postdiction

3. Online recognition and postdiction
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Online recognition and postdiction

A generic dynamic internal model

We assume a generic internal model

zt = f(zt−1, ξ
(z))

xt = g(zt, ξ
(x))

Assumptions

Discrete-time

Markov property

Stationarity

zt−1 zt

xtxt−1
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Online recognition and postdiction

Representing and computing beliefs of the whole history

Online recognition (�ltering): maintain q(zt|x1:t)

De�ne temporally extended encoding function ψt := ψ (z1:t) for DDC

A plausible ψt

ψ1 := γ (z1)

ψt := Uψt−1 + γ (zt)

Update beliefs about the past: compute

rt = Eq(z1:t|x1:t) [ψt]

from rt−1 and xt
Postiction: readout statistics

h(zt−τ ) ≈ α ·ψ(z1:t) =⇒ Eq(zt−τ ) [h(zt−τ )] ≈ α · rt
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Online recognition and postdiction

Learning to postdict online

Want rt(x1:t) = Eqt [ψt (z1:t)]

Recall for p(z,x)
r := φW ∗(x)

Likewise, for SSM p(z1:t,x1:t)

rt := φW t
(x1:t)

Learning by the delta rule

∆W t ← (ψt − φt)(rt−1 ⊗ σt)ᵀ

{ψt,xt, rt−1} ∼ p(z1:t,x1:t), {hW i}
t−1
i=1
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Testing DDC �ltering on simulated experiments

Summary of DDC �ltering and Questions

Representation: DDC rt := Eq(z1:t|x1:t) [ψt(z1:t)]

Computation: bilinear rt := W ∗ · (rt−1 ⊗ σ(xt))

, or linear Eq [h(zt−τ )] ≈ αᵀrt

Learning to infer: delta rule ∆W ∝ (ψt − φW )(rt−1 ⊗ σt), similar for readout α
Questions:

Is the encoding function ψt = Uψt−1 + γ(zt) the best?

Does the brain encode the joint q(z1:t|x1:t)?

Any theoretical argument for using the bilinear rule?

Is there a way to also adapt U in a plausible way?

Can we encode the internal model by DDC? (talk to Eszter Vértes)
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