
Neural network trained with supervision represents uncertainty by nonlinear moments
Li Wenliang, Maneesh Sahani
Gatsby Computational Neuroscience Unit, University College London, {kevinli, maneesh}@gatsby.ucl.ac.uk

Computation with uncertainty
Humans and animals process uncertain sensory inputs reliably as though they are able to
manipulate the underlying probability distributions.

Cue combination (Battaglia et al. 2003)

visual auditory

posterior

xV ± V xA ± A

yMAP =

1
σ2

v
xV + 1

σ2
a
xA

1
σ2

v
+ 1
σ2

a

Causal inference (Körding et al. 2007)

Risk-based decision making (Whiteley and Sahani 2008)

Generally, computation with uncertainty requires:

multiplicative combination of distributions (or messages)

p(x1|y) p(x2|y)

p(y|x1, x2)

p(y |x1, x2) ∝ p(x1|y)× p(x2|y)

marginalization

Four broad hypotheses for how neuronal populations may encode and process uncertainty:

Linear basis / kernel density estimates (Eliasmith and Anderson 2004)

(Doubly) Distributional population codes (Zemel et al. 1998, Sahani and Dayan 2003)

Sampling (Hoyer and Hyvärinen 2003, Orbán et al. 2016)

Log-linear codes (PPC) (Ma et al. 2006)

Consistent computation requires a hand-crafted circuit.

Supervised networks can learn to
interpret noisy inputs, but do not find a
consistent representation of
uncertainty (Orhan and Ma 2017).

We seek a neural architecture and
learning rule that automatically
acquires consistent representations
of and computations with
uncertainty without explicit design.

p(x1|y)

p(x2|y)

(p(y |x1, x2))
Representation Computation Learning

??

??

??
d = z11z21

z12+z22+Js
-1

2

[
z22z2

11
(z12+Js)(z12+z22+Js)

+
z12z2

21
(z22+Js)(z12+z22+Js)

- log
(

1 + z12z22
Js(z12+z22+Js)

)]

References
Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. Josa a, 20(7), 1391–1397.
Eliasmith, C. & Anderson, C. H. (2004). Neural engineering: Computation, representation, and dynamics in neurobiological systems. MIT press.
Hoyer, P. O. & Hyvärinen, A. (2003). Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Nips (pp. 293–300).
Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal Inference in Multisensory Perception. PLOS ONE, 2(9), 1–10.
Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438.
Orbán, G., Berkes, P., Fiser, J., & Lengyel, M. (2016). Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex. Neuron, 92(2), 530–543.
Orhan, A. E. & Ma, W. J. (2017). Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback. Nature Communications, 8(1), 138.
Sahani, M. & Dayan, P. (2003). Doubly distributional population codes: simultaneous representation of uncertainty and multiplicity. Neural Computation, 15(10), 2255–2279.
Vértes, E. & Sahani, M. (2018). Flexible and accurate wake-sleep learning in deep exponential family models (submitted). AISTATS.
Whiteley, L. & Sahani, M. (2008). Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes. Journal of Vision, 8(3), 2.
Zemel, R. S., Dayan, P., & Pouget, A. (1998). Probabilistic Interpretation of Population Codes. Neural Computation, 10(2), 403–430.

The distributed distributional code (DDC)
Belief about y represented by linear projections of density p(y) on basis functions ψi:

probability density function p(y)

basis functions {ψi(y)}
9
i=1

DDC vector∫
p(y)ψ1(y)dy =∫
p(y)ψ2(y)dy =∫
p(y)ψ3(y)dy =∫
p(y)ψ4(y)dy =∫
p(y)ψ5(y)dy =∫
p(y)ψ6(y)dy =∫
p(y)ψ7(y)dy =∫
p(y)ψ8(y)dy =∫
p(y)ψ9(y)dy =

(cf. distributional population codes Zemel et al. 1998; Sahani and Dayan 2003)

Representation
Expectations (or moments) define an exponential family of beliefs by maximum entropy.

E.g. Gaussians are defined by linear and quadratic functions (first and second moments):
[r1, r2] =

[
Ep(y)[ψ1(y)],Ep(y)[ψ2(y)]

]

where ψ1(y) = y and ψ2(y) = y2.

Arbitrary functions define more complicated families:
r = Ep(y)[ψ1(y), · · · ,ψn−1(y),ψn(y)]⇒ p(y|θ) ∝ exp(θ ·ψ(y)) such that Ep(y|θ)[ψ(y)] = r

The rates r are the mean parameters of the distribution.

Can encode multiplicity and uncertainty:
uncertainty: left or right multiplicity: mixed left and right

vL vR P(vL, vR)
1.0 0.0 0.5
0.0 1.0 0.5
0.5 0.5 0.0

vL vR P(vL, vR)
1.0 0.0 0.0
0.0 1.0 0.0
0.5 0.5 1.0

or

Ep(vL,vR)[ψ(vL, vR)] = 0.5ψ(1.0, 0.0) + 0.5ψ(0.0, 1.0) Ep(vL,vR)[ψ(vL, vR)] = ψ(0.5, 0.5)

Computation
Easy to approximate expectations of functions given a rich set of basis functions:

g(y) ≈
∑

i

αiψi(y) =⇒ Ep(y) [g(y)] ≈ Ep(y)

[∑
i

αiψi(y)

]
=

∑
i

αiEp(y) [ψi(y)] =
∑

i

αiri

Can implement conditioning and message passing:
p(y |x) ∝ p(y)p(x |y)⇔ Ep(y |x)[ψ(y)] = Wφ(x)

Learning
Each neuron must estimate an expectation: easy to do with supervised learning.

In fully observed models, probabilistic computations can be learned from training data:
W = Cov[ψ(y),φ(x)]Cov[φ(x),φ(x)]−1

State-of-the-art performance using wake-sleep (Vértes and Sahani 2018 — Poster II-57).

Key question

Can a network trained without explicit supervision of latents learn
to represent probabilistic beliefs?
to propagate uncertainty (message passing)?

A task that requires uncertainty computation
Data: state-space model

yt−1 yt

xt−1 xt

yt ∼ Normal(f (yt−1),Σ)

xt ∼ Poisson(GeByt)

y1 f (y1) y2 f (y2) y3

Task: predict yt given x1:t so that the MSE 〈‖yt − ŷt‖2〉 is minimized.
Example: tracking a prey moving behind bushes in real time.
Answer: Ep(yt |x1:t) [yt], requires good representation of p(yt |x1:t).
Constraint: the brain does not have access to the full history x1:t but only has a representation
of it in memory, necessitating effective encoding of posterior.

0 20 40 60 80 100
time steps

1
0
1

po
st

er
io

r y

true post mean

DDC update of latent belief state: bilinear message passing

p(yt |x1:t)︸ ︷︷ ︸
new belief

∝
∫

p(yt-1|x1:t-1)p(yt |yt-1)p(xt |yt)dyt-1

=

∫
p(yt-1|x1:t-1)p(yt |yt-1)

∫
p(Xt |yt)δ(Xt-xt)dXtdyt-1

=

∫ ∫
p(yt-1|x1:t-1)︸ ︷︷ ︸

memory

p(yt |yt-1)p(Xt |yt)︸ ︷︷ ︸
model

δ(Xt-xt)︸ ︷︷ ︸
feature

dXtdyt-1

New belief is a bilinear function of
memory rt−1 and observation feature φt.
If we represent p(yt |x1:t) by a vector rt,
then

r (i)t = rt-1 ·W(i) · φ(xt)
rt = W · vec(rt−1 ⊗ φt)

DDC-consistent recurrent neural network

yt−1 yt

xt−1 xt

data

ŷt−1 ŷt

rt−1 rt

xt−1 xt

⊗⊗
φ(·) φ(·)

Bilinear (B)

ŷt−1 ŷt

rt−1 rt

xt−1 xt

σ(+)σ(+)

φ(·) φ(·)

Simple (S)

ŷt−1 ŷt

rt−1 rt

xt−1 xt

++
φ(·) φ(·)

Add (A)

ŷt−1 ŷt

rt−1 rt

xt−1 xt

⊗⊗

��@@∇ ��@@∇ ��@@∇

φ(·) φ(·)

Mean (M)

Transform xt into a DDC vector: φt = tanh(Vxt) = Eδ(Xt−xt) [tanh(VXt)].
B: rt = W · vec(rt−1⊗φt) S: rt = tanh(W1rt−1 +W2φt) A: rt = tanh(W1rt−1) + tanh(W2φt)
M: follows bilinear update but only passes on the previous predicted mean.
Training: ŷt = Urt, minimize 〈‖yt − ŷt‖2〉 over U,V and W by back-propagation through time.
Importantly, the neurons are not enforced to have a DDC representation.

Results
The Bilinear network makes predictions closer to the particle filter than alternatives.

0 25 50 75 100 125 150 175 200
time steps

10 2

10 1

di
st

an
ce

 fr
om

op

tim
al Bilinear Simple Add Mean

This suggests that the Bilinear network may be performing statistical computation.

Does a DDC representation arise automatically in the Bilinear RNN?

r (i)t
?
= Ep(yt |x1:t)[ψi(yt)]

Use radial basis function (RBF) to approximate ψ(y):

ψ(y) :=
∑

m

αmk(y − ym), where k(y − ym) = exp

(
−
‖y − ym‖2

2σ2

)

tra
in

te
st

E =
ψ1
ψ2
ψ3
ψ4
ψ5

r1

r2

r3

r∗?
= -4.0 0.0 4.0

-4.0

0.0

4.0

-5.0 0.0 5.0

ψ1(y) ψ2(y) ψ3(y) ψ4(y) ψ5(y)

y2

y1

ψ(y) found in the Bilinear network explains most of the variance in r.
Using simpler ψ(y) (linear or quadratic) or learning functions on data history yielded lower R2.

B S A M
network

0

1

te
st

 R
2

DDC

L Q RBF
function class

Bilinear RNN

B S A M
network

x history

B S A M
network

y historyr (i)t
?
= Ep(y|x1:t)[ψi(y)] Bilinear RNN r (i)t

?
= ψi(xt−5:t) r (i)t

?
= ψi(yt−5:t)

Conclusions
The distributed distributional code (DDC) represents distributions by nonlinear “moments”.

A neural network model with bilinear architecture consistent with this hypothesis, trained to
perform a task requiring inference (but without explicit probabilistic supervision):

was more accurate than alternative networks
learnt consistent hidden activations that were nonlinear moments of the true posterior.

Thus, the DDC offers a flexible, powerful and biologically plausible framework for
representation, computation and learning
Questions

How robust is this representation under noise?
How well can the network learn in an online fasion, back-propagating a short time window?
How to make the learning rule more biologically plausible?

[This work was supported by the Gatsby Charitable Foundation.]

	References

