Neural network trained with supervision represents uncertainty by nonlinear moments

Li Wenliang, Maneesh Sahani
Gatsby Computational Neuroscience Unit, University College London, {kevinli, maneesh }@gatsby.ucl.ac.uk

A

i

The distributed distributional code (DDC)

Computation with uncertainty

Humans and animals process uncertain sensory inputs reliably as though they are able to

m Belief about y represented by linear projections of density p(y) on basis functions ;:

manipulate the underlying probability distributions.
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m Causal inference (Kording et al. 2007) p(y) dy =

m Risk-based decision making (Whiteley and Sahani 2008)
m Generally, computation with uncertainty requires:

(cf. distributional population codes Zemel et al. 1998, Sahanl and Dayan 2003)

Representation

= multiplicative combination of distributions (or messages) m Expectations (or moments) define an exponential family of beliefs by maximum entropy.

p(y|x1, x2)

p(ylxy, Xo) o< p(xqly) X mE.g. Gaussians are defined by linear and quadratic functions (first and second moments):

plxily) 1, 2] = [Eppy) 1 (1)), Epgyy [z (1]
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mmarginalization
m Arbitrary functions define more complicated families:

r = Epp)[1(y), -+ Wn1(y), 10,111 = plylO) o exp(8 - 1b(y)) such that Epyig)[th(y)] =
The rates r are the mean parameters of the distribution.

Four broad hypotheses for how neuronal populations may encode and process uncertainty:

mLinear basis / kernel density estimates (Eliasmith and Anderson 2004)

m (Doubly) Distributional population codes (Zemel et al. 1998, Sahani and Dayan 2003) m Can encode multiplicity and uncertainty:

uncertainty: left or right

m Sampling (Hoyer and Hyvarinen 2003, Orban et al. 2016)

mLog-linear codes (PPC) (Ma et al. 2006) | / '/
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uncertainty (Orhan and Ma 2017). p(x1y) , N

Computation

m\We seek a neural architecture and | | | | | | |
m Easy to approximate expectations of functions given a rich set of basis functions:

learning rule that automatically \\N~A

acquires consistent representations ,;‘,? o ﬂ
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m Can implement conditioning and message passing:
pylx) o< ply)p(xly) < Epyixlep(y)]
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Learning
m Each neuron must estimate an expectation: easy to do with supervised learning.

m In fully observed models, probabilistic computations can be learned from training data:

W = Cov[9(y), ¢(x)ICovip(x), p(x)]™

m State-of-the-art performance using wake-sleep (Vértes and Sahani 2018 — Poster 11-57).

Koy queston Resls

Can a network trained without explicit supervision of latents learn
mto represent probabilistic beliefs?
mto propagate uncertainty (message passing)?

A task that requires uncertainty computation

Data: state-space model \Z

*@?

~ Normal(f(y;—1), &)
~ Poisson(Ge®Y)

Task: pred|ct yt given Xi.; so that the MSE (|ly; — y¢||*) is minimized.
Example: tracking a prey moving behind bushes in real time.

Answer:

Cotyilx:) [Yil, requires good representation of p(y:|X1.).
Constraint:

the brain does not have access to the full history x1.; but only has a representation

of it In memory, necessitating effective encoding of posterior.
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[ New belief I1s a bilinear function of
P(Yi11X1:-1) p(Yel Y1) (Xt Y1) DY -1 memory r;_; and observation feature ¢;.
’ If we represent p(yxi.;) by a vector r;,
" then
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Simple (S)

Add (A)
4:5(Xt—xt) [tanh (th)] :

Bilinear (B)

m Transform X; into a DDC vector: ¢; = tanh(VXx;) =

vec(ri1® @)  S:ry=tanh(Wqr, 1 + W)

m M: follows bilinear update but only passes on the previous predicted mean.
m Training: y; = Ur;, minimize {||y; — y||) over U, V and W by back-propagation through time.
mImportantly, the neurons are not enforced to have a DDC representation.

A:r; = tanh(W1 rt_1) + tanh(qubt)

m [ he Bilinear network makes predictions closer to the particle filter than alternatives.
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This suggests that the Bilinear network may be performing statistical computation.
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mDoes a DDC representation arise automatically in the Bilinear RNN?
(N £ m

rt P(Vt|X1:t) []‘I)’(yt)]
Use radial basis function (RBF) to approximate 1 (y):

P(y) =) xXnk(Y —Ym), Where k(y —y,) = exp (
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1 (y) found in the Bilinear network explains most of the variance inr.
Using simpler q,b( ) (linear or quadratic) or learning functions on data history yielded lower R?.
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Conclusions

m [ he distributed distributional code (DDC) represents distributions by nonlinear “moments”.

m A neural network model with bilinear architecture consistent with this hypothesis, trained to

perform a task requiring inference (but without explicit probabilistic supervision):

mWwas more accurate than alternative networks
m learnt consistent hidden activations that were nonlinear moments of the true posterior.

mlhus, the DDC offers a flexible, powerful and biologically plausible framework for
representation, computation and learning

m Questions

m How robust is this representation under noise?

m How well can the network learn in an online fasion, back-propagating a short time window?
m How to make the learning rule more biologically plausible?
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