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Machine learning in/for/from/and neurocience

Today's overview
@ Modern machine learning techniques
@ Applications of machine learning for neuroscience
@ Neuroscience inspirations for machine learning (on very high level)
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Modern machine learning godview
An (almost) universal description for machine learning:
fnewlj\rll Ler(f,Der)  so that  Leyal(f, Deval) is small,  where Dir, Deya) ~ S

@ f: a model or a function @ S: task paradigm @ L training objective

@ M: the class of model @ Dy and Dg,,: training and @ Leyal: is final evaluation criterion
evaluation datasets

Categorisation of different approaches:

By goal f and data Dy, By model space, M By task paradigm S
@ Supervised @ Parametric models: polynomials, @ Multiple objectives
. — . v li ial i .
f: X =Y D={x,y} o T\Tmes’ radlat !33515 dels: kNN @ Transfer / causal learning
. . onparametric models: k-NN, . . .
° ;_Jl.'ls)lélper\gse,g /_self—superwsed decis’i)on tree, kernel methods, @ Online / continual / active
1 X = Z,D={x} X learning
Reinf @ Neural networks: CNN, RNN,
@ Reinforcement GNN transformers... @ Meta-learning

f: X — A,
Dy, collected from f

Related fields: mathematics, optimization, engineering, statistics, domain knowledges

Li Kevin Wenliang (Google DeepMind) Machine Learning Techniques for Neuroscience August 5, 2023 3/34



Supervised learning [ZZUIEEEECIT

Supervised learning

Recall image classification
Dataset Dy, := {x,-7y,-}iv where x; € X ;= RZFVX"XC is a vector of image pixels, y; € YV := 1x

[ 213 12
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= o o wXx hxc
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f: RZ‘F’X”XC — Ak Li(f, Dye) = %Zy,- -log f(x;) log(+) is elementwise.
i=1
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T MO Problem setup

Supervised learning with neural networks

Supervised learning can solve the following problems

| image cls. | speech recog. | translation [ gait recog. | image seg. | scene parsing |
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@ Machine supervised learning is a trivial problem to some. But is it?

@ Most deep learning techniques and tricks are discovered through supervised learning

@ Becoming a test bed for benchmarking theory and techniques (e.g. tricks)
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Supervised learning [ZZUIEEEECIT

Key (overlapping) ingredients in machine learning
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width vs depth initialisation

Lo+~ MNIST Multiayer Neural Network + dropout
T\ — AdaGrad
RMSProp

AdaDelta
Adam

0 f9®0) = g'(fx)
data

optimization augmentation equivariance

finetuning finetuning

A lot remains to be discovered, explained and improved...
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Deep network model of vision

Applications to neuroscience: models of vision

Supervised deep models show similarities to primate visual ventral stream (Yamins et al., 2014)
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S MG S Deep network model of vision

Applications to visual perceptual learning

Supervised training replicates findings in visual plasticity on different analysis levels (Wenliang & Seitz, 2018)
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Unsupervised learning AT

Unsupervised learning

Goal: discover useful representation of complex data for downstream tasks

Quantifiable metrics Lc,a: outlier detection, generative quality, compression, transfer tasks, etc.

’ ‘ clustering ‘ dim. reduction ‘ manifold ‘ representation ‘ generation ‘
X R" R" R" R" R"
Z 1mor An R™ m<n S™, trees, etc. RrRmM RrRmM
Lir distances reconstruction reconstruction density distributional
density + prior + coarse labels metrics,
denoising
Leval visualisation, reconstruction interpolation classification sample quality
classification, denoising homology generation inpainting
outlier generation interpolation
detection
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https://en.wikipedia.org/wiki/Cluster_analysis#Algorithms
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Generative_model

Unsupervised learning AT

Deep learning methods for unsupervised learning

We briefly review the objectives and intuitions of the following approaches
@ Variational autoencoders (VAE)
@ Generative adversarial networks

© Constractive pre-training
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(VOPNTYRV L RTINS Variational autoencoders (VAE)

Latent variable model

Definition

Given dataset D := {X,-}fvzl, a latent variable models (LVM) posits that each data point x; € X is
generated from a latent variable z; € Z through a model parametrised by 6

Zi — X

Example

Linear model: data generated by a linear mapping G € RY*¥ where k < d

x; = Gz; + ¢;

Interpretation of latent variable models:
@ z; is specific to each data instance x;
@ 0 captures overall patterns for the whole dataset
@ alternatively, z is a local parameter for x;, and 6 is a global variable for D.
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(VOPNTYRV L RTINS Variational autoencoders (VAE)

Generative latent variable model

To let the z; be controllabe/interpretable, we place a prior pg(z)

Example

Prior p(z) can be

N(0,1) Laplace uniform circular Bernoulli | hyperbolic | Markov chain
common choice | sparsity priors | rotation-symmetry | discrete | hierarchical time-series
Likewise, we can specify a flexible and learnable mapping G : Z — X
Example
The likelihood p(x|z) can be
x=Az+e¢ x = Go(z)+e z0— h1,z1 = = x z,y = X
linear + noise | nonlinear + noise hierarchical conditional

The joint distribution pg(x,y) = pe(z)pe(x|z) induces a posterior p(z|x) through Bayes rule.
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(VOPNTYRV L RTINS Variational autoencoders (VAE)

Generative model: applications to cognitive science

internal world model

generative, Inferential,
internal recognition

lighting p(z) Z Q(z ‘ w)

I xr

Edward H. Adelson Edwa
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(VOPNTYRV L RTINS Variational autoencoders (VAE)

Generative model: applications to perception

cue combination motion illusion continuity illusions visual prior

; . .
Noise (At>2's) 1.2

®
Weiss et al, 2005 - Noise and biases n

[———] perception and decision making

Ernst & Bank, 2002 Houlsby, et al, 2013

Illusory texture
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(VOPNTYRV L RTINS Variational autoencoders (VAE)

The variational autoencoder (VAE) and other variants

input hidden output

Ed >

The variational autoencoder trains the likelihood pg(x|z) and an encoder g(z|x) jointly

Lr(0, q; x) = B, q(z|x) [log pe(x]2)] = D [q(z|x)||p(2)],

expected recon. loss prior constraint

where D is come distributional distances.

@ deterministic g(z|x) and zero D = conventional nonlinear autoencoder
Gaussian p(z), po(x|z) and q(z|x), D =KL = VAE L(0;x) < log pg(x) (Kingma & Welling, 2014; Rezende et al. 2014)
Gaussian p(z), deterministic pg(x|z) and g(z|x), D is W> => Wasserstein AE (Tolstikhin et al. 2017)
D = BKL = beta-VAE (Higgins et al. 2017)
discrete g(z|x) and vector-quantization loss D = VQ-VAE (Oord et al., 2018)
Separate network q(z|x) trained by sample from p(z,x) = Helmholtz machine and wake-sleep algorithm (Dayan et al.,
1994, Hinton et al., 1995)
@ Implicit g(z|x) by nonlinear moments =- biologically plausible training (Vertex & Sahani 2018, Wenliang & Sahani 2019)
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(VOPNTYRV L RTINS Variational autoencoders (VAE)

VAE: applications to neural data analysis
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Variational autoencoders (VAE)

Wake-sleep algorithms

training HH models with kernel
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(NPT QPSS Generative adversarial networks

Implicit models

Definitions

Implicit generative model defines a prior p(z) and a deterministic mapping Gy : Z — X.

The only randomness is in the prior: a latent z maps directly to x, no additional noise.

Example

Differential eqns: Wilson-Cowan, Hodgkin-Huxley models and attractor models.

Technicality: the generative distribution may be supported on a lower-dimensional subspace. The
likelihood of py(x) may be ill-defined for a given data point x.
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Optimising distributional distances

Fitting a generative distribution requires a distributional distance
@ Maximising the log-likelihood is equivalent to minimising the Kullback-Leibler divergence

q(x
KLlalpl = [ a0)1os %dx = [ atorog atdx — [ ax)togpx)ax
@ The first version of GAN (Goodfellow, 2014) optimises the Jensen-Shannon divergence

IS[allpl = %KJL [qH% (p+ q)] + %KL [pl\% (p+ q)]

@ Later GANs optimises other objectives: MMD-GAN, Cramer-GAN, optimal transport GAN, Wasserstein GAN, f-divergence
GAN, etc.

I

\ e
ﬁgg‘éom / I @ — _(Fake

Generator

Fake image
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(NPT QPSS Generative adversarial networks

GAN for neuroscience

GANs have not made much applications in neuroscience...

- : real COT-GAN TimeGAN Sinkhorn GAN
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Contrastive self-supervised learning

Can we just learn representation without generating the data?
Contrastive learning (SimCLR, Chen et al., 2019) obtains features invariant to all irrelevant transformations of data.
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@ Sample transformations t,t' ~ T
@ For each x € D, obtain two transformed images x; = t(x) and x; = t'(x)
@ then transform through a DNN to obtain representations z; = h(x;) and z; = h(x;)
@ For m data points, compute similarity s; := p(z;, z;) from one image x, also similarities from different images s
@ Minimise the contrastive loss Lir(x;) 1= ﬁ M1 (xi, %) + £(x;, x;) where
exp (sjj/T
Z(x,-,xj) = —log M
Zk;ﬁj exp (sik/T)

@ Test on other losses L4, such as classification
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Self-supervised learning

Self-supervised learning: application to neuroscience

Self-supervised models can transfer to other tasks and predict neural activities (Zhuang et al., 2021)
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Problems: self-supervised learning usually requires HUGE dataset and compute power.
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Self-supervised learning

Augment and train, not much thinking

Supervised learning can solve the following problems

| image cls. | speech recog. | translation [ gait recog. | image seg. | scene parsing |
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o Modify these to be self-supervised learning.

@ Are there more principled methods to introduce augmentation?

@ Can we enumerate all possible augmentations?
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Reinforcement learning

Deep reinforcement learning

Definition

A Markov decision process (MDP) is given by the tuple (S, A, R, Px, Pr,7), consisting an environment
with transition dynamics Px(s’|s, a) and reward distribution Pr(r|s,a) for s,s’ € S, ae Aand r e R,

discounting factor v > 0.

Broadly categorised into three approaches
@ Valued-based
e model-free/model-based
o offline RL (similar to supervised learning)
e distributional RL
@ Actor-critic
@ Policy-based

o REINFORCE
o Deterministic policy gradient
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Valued-based RL

Goal: estimate the value function Q™ : X x A — R given a policy =
For each transition s’ ~ Px(:|s,a) and reward r ~ Pr(:|s, a)
@ Simple Q-learning in a tabular environment:

Q7 (s,a) + Q" (s,a) + « [r + 7 max Q" (s',a*) — Q7 (s, a)}

@ Deep Q Network (DQN, Mnih et al., 2015) constructs a neural network Qu(s, a)
sgd 0 . 5
0 00 <r + 7 max Qsg(o)(s',a") — Qus, a))

where sg is stop-gradient operator (“.detach()" in PyTorch).
The Q-values are used to derive a policy: e-greedy, softmax, etc.

Important tricks to make training data more i.i.d.:
o replay buffer: the transitions are accumulated into a replay buffer (biologically inspired?)
o offline RL: maintain a behavioural network and a target network, occasionaly copy
Machine Learning Techniques for Neuroscience August 5, 2023
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Reinforcement learning

Results on Atari
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Distributional RL

Goal: estimate the return distribution ™ : X x 4 — Py given a policy
Instead of finding Q(s,a) :=E, [G(s,a)] for G(s,a) := > =, 7' R;, dist. RL estimates the distribution

n™ (s, a) := distribution(G(s, a))

@ Distributional versions of Bellman update (Bellemare, Dabney & Rowland, 2023)
@ Requires a form of distributional representation (e.g. histogram, quantiles)
@ Biological evidence of dopamine neurons signaling (Dabney et al., 2020)
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The field is exploding...

Classical learning paradigms are losing attention from research as industries begin to prevail.
Forefront of machine learning is addressing more challenging and diverse set of learning problems.
@ Theory
o Meta-learning
@ Approximating complex physical systems (differential equations)
@ Learning from human feedback
The following slides are just a brief taste of how much is going on...

Categories * English ~ Google Scholar
Publication bSindex hSmedan  Top publications
1. Newre aa4 667 o JAMA 27 425
2. The New England Joumal of Medicine 4 780 12 Chemical Reviews 25 444
3, Science 401 614 13, Proceedings of the National Academy of Sciences 256 364
4. IEEE/CVF Conference on Computer Vision and Patter Recognition 380 627 14, Angewandte Chemie 25 a2
5 Thelancet 354 635 15, Chemical Society Reviews 204 36
6. Advanced Materials. 312 418 6. Joumal of the American Chemical Society 242 344
7. Nature Communications 307 428 17. IEEE/CVF International Conference on Computer Vision 239 415
8. Cell 300 505 18. Nucleic Acids Research 238 550
o, International Conference on Learning Representations 286 533 19, Intenational Conference on Machine Learning 217 421
0. Neural Information Processing Systems. 218 436 20.  Nature Medicine 25 389
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Modern machine learning paradigms

Theory: linear deep networks

Linear deep networks y = W W, _1--- Wix
@ no more representation power than a single layer y = {H/L:;l W,}

@ show nonlinear dynamics

o related to cognitive development of percpetual and semantic learning
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Theory: neural networks and the Chompsky hierarchy

Task: compare performance of different neural architectures on tasks of the Chompsky hierarchy
(Delétang et al., 2022)

MiNfeRNN class Lur(f5 X1:100, Y1:100)  test on Le(f; x1:500, Y1:500)
Level Task RNN  Stack-RNN  Tape-RNN  Transformer LSTM
Even Pairs 100.0 100.0 100.0 9.4  100.0
R Modular Arithmetic (Simple) 100.0 100.0 100.0 242 100.0
Parity Check! 100.0 100.0 100.0 520 100.0
Cycle Navigation® 100.0 100.0 100.0 61.9 100.0
Stack Manipulation 56.0 100.0 100.0 57.5 59.1
infinite tape Reverse String 62.0 100.0 100.0 62.3 60.9
recursively enumerable LLLTT] D Modular Arithmetic 413 96.1 95.4 25 592
context-sensitive Solve Equation® 51.0 56.2 64.4 257 678
BRI linear tape
CE Getis [EEEEE] Duplicate String 50.3 528 100.0 528 576
regular -~ Missing Duplicate 523 55.2 100.0 56.4 543
stack r
RNN - 0dds First 510 519 100.0 528 556
finite J CS  Binary Addition 50.3 527 100.0 543 555
FENNRT o fiome counter finite-state Binary Multiplication* 50.0 527 58.5 522 531
controller
counter Compute Sqrt 543 56.5 57.8 524 575
LSTM Bucket Sort™* 279 78.1 70.7 91.9 99.3
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Modern machine learning paradigms

Meta-learning

Goal: learning to learn, finding an learning algorithm from data
From a sequence of tasks/datasets Dt(rl), e Dt(,") ~S8

min Lo (F, D, DY) sothat  Leval(F, D) is small.

Weight-based: find f Memory/Activity-based: Low-rank weights + memory
that can adapt activity encodes task
Dezfouli et al. 2019
Finn et al., 2017 Wang et al., 2018

Input sequences Encoder Decoder Learning network

— meta-learning oo,
9 learning/adaptation A 8 A Y Latent space
LA Y
VL B =
VL, . :
ve! 0 \| S |2 +{RNN -

5 S . . v i
N @ Lo
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Modern machine learning paradigms

Learning complex dynamical systems

Traditional approach: simulate large-scale differential equations
The deep approach: throw in data (+tricks, inductive biases, etc.) and just train...

Predicting dark matter halo Weather forecasting Estimating Hodgkin-Huxley model parameters

density
Gongalves et al., 2020

Vaughan et al., 2021
Lucie-Smith et al., 2022

neural density estimator

consistent sample
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Modern machine learning paradigms

Learning from human preferences

Large language models (LLMs) require a large amount of expert inputs

Different ways of improving a trained LLM
@ prompt engineering / in-context learning

o self-improvement with external tools

o weight finetuning

WikiSQL
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Modern machine learning paradigms

Concluding remarks

fmi\rjt Lu(f,Dyy) sothat  Leyal(f, Deval) is small,  where Dy, Deyal ~ S
€

Deep learning is the main workhorse for tech industry and aid for scientifc advances.
@ Traditional boundaries between forms of learning are getting blurred

@ Being smart is sometimes less important having interesting ideas (designing L, and S)
Transforming learning problems into data engineering

Thinking about natural cognitive abilities is helpful for generating ideas

Unclear how implementation level knowledge directly and exclusively drive deep learning
More tricks to be discovered

Theory of learning is important but have not generated big leaps

Imagination is the only limit

o If you want to do research, you must have a deep learning plan.
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